Skip to main content

Abstract

Nature is bountiful of living biota which ranges from 3 to 50 million and one-third of global biodiversity exists in India. Since prehistoric times, humans have exploited microorganisms for their own use. The Earth’s subsurface presents one of the finest promising locations to look for microbial life and the distinctive lithologies that life leaves behind. Studies on microbial diversity are hampered not only by the technical ability to assess the species numbers but also by the high heterogeneity of the environment, with its changing temporal and spatial microhabitats. Moreover, natural products are for the most part a booming source of drug leads. Regardless, their application in innovation of new drug has fallen out of favour. Not more than 10% of the planet’s biodiversity has been under trial for biological property; a lot of functional natural compounds are pending innovation. The test is how to get in touch with this natural chemical diversity. In this aspect, research on caves is the utmost need of the hour to increase our acceptance of the means of biological adjustment to severe circumstances, the relations involving organisms and minerals, the function of inorganic matter in diverse dark ecosystems and the evolution and speciation of biological schemes under acute circumstances, progressing to a range of biotechnological uses. In the present chapter, a handful of the important caves around the world are described, together with an analysis of the potential health effects from the microbes inhabiting such ecosystems. Needless to emphasise, such type of study spanning over length and breadth of India is the urgent need of the hour, which hopefully would unravel many of the microbes of biotechnological importance. Suggestions for potential investigations are highlighted to promote going with the flow from qualitative research to additional experimentations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2008) Bacteriophage ecology: population growth, evolution, and impact of bacterial viruses. Cambridge University Press, Cambridge, p 526

    Book  Google Scholar 

  • Achal V, Pan X (2011) Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol 62:894–902

    Article  CAS  PubMed  Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1):117–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Alfreider A, Vogt C, Hoffman D, Sable W (2003) Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit from groundwater and aquifer microorganisms. Microb Ecol 45:317–328

    Article  CAS  PubMed  Google Scholar 

  • Axenov-Gibanov DV, Voytsekhovskaya IV, Tokovenko BT, Protasov ES, Gamaiunov SV, Rebets YV, Luzhetskyy AN, Timofeyev MA (2016) Actinobacteria isolated from an underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia as sources of novel biologically active compounds. PLoS One 11:e0149216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Joshi SR (2013) Insights into cave architecture and the role of bacterial biofilm. P Natl A Sci India B 83(3):277–290

    Article  CAS  Google Scholar 

  • Banerjee S, Joshi SR (2014) Ultrastructural analysis of calcite crystal patterns formed by biofilm bacteria associated with cave speleothems. J Microsc Ultrastruct 2(4):217–223

    Article  Google Scholar 

  • Banerjee S, Joshi SR (2015) Mineralogical footprints of bacterial biofilms associated with Labit cave, a part of the longest cave system in India. Geomicrobiol J 33(8):699–708

    Article  CAS  Google Scholar 

  • Banerjee S, Joshi SR (2016) Culturable bacteria associated with the caves of Meghalaya in India contribute to speleogenesis. J Cave Karst Stud 78(3):144–157

    Article  CAS  Google Scholar 

  • Banerjee S, Rai S, Sarma B, Joshi SR (2012) Bacterial biofilm in water bodies of Cherrapunjee: the rainiest place on planet earth. Adv Microbiol 2(4):465–475

    Article  CAS  Google Scholar 

  • Barton HA (2006) Introduction to cave microbiology: a review for the nonspecialist. J Cave Karst Stud 68:43–54

    Google Scholar 

  • Barton HA (2015) Starving artists: bacterial oligotrophic heterotrophy in caves. In: Engel AS (ed) Microbial life of cave systems. Walter de Gruyter, Berlin, pp 79–95

    Google Scholar 

  • Baskar S, Baskar R (2014) A summary of some microbes identified from different Indian caves and their possible role in mineral formations. Amb Sci 1(2):9–16

    Article  Google Scholar 

  • Baskar S, Baskar R, Mauclaire L, McKenzie JA (2005) Role of microbial community in stalactite formation, Sahastradhara caves, Dehradun, India. Curr Sci India 25:1305–1308

    Google Scholar 

  • Baskar S, Baskar R, Mauclaire L, McKenzie JA (2006) Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr Sci India 10:58–64

    Google Scholar 

  • Baskar S, Baskar R, Kaushik A (2007) Evidences for microbial involvement in the genesis of speleothem carbonates, Borra Caves, Visakhapatnam, India. Curr Sci India 10:350–355

    Google Scholar 

  • Baskar S, Baskar R, Lee N, Kaushik A, Theophilus PK (2008) Precipitation of iron in microbial mats of the spring waters of Borra Caves, Visakhapatnam, India: some geomicrobiological aspects. Environ Geol 56(2):237–243

    Article  CAS  Google Scholar 

  • Baskar S, Baskar R, Lee N, Theophilus PK (2009) Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. Environ Geol 57(5):1169

    Article  CAS  Google Scholar 

  • Baskar S, Baskar R, Tewari VC, Thorseth IH, Øvreås L, Lee NM, Routh J (2011a) Cave geomicrobiology in India: status and prospects. In: Stromatolites: interaction of microbes with sediments. Springer, Dordrecht, pp 541–569

    Chapter  Google Scholar 

  • Baskar S, Baskar R, Routh J (2011b) Biogenic evidences of moonmilk deposition in the Mawmluh cave, Meghalaya, India. Geomicrobiol J 28(3):252–265

    Article  Google Scholar 

  • Baskar S, Baskar R, Thorseth IH, Øvreås L, Pedersen RB (2012) Microbially induced iron precipitation associated with a neutrophilic spring at Borra Caves, Visakhapatnam, India. Astrobiology 12(4):327–346

    Article  CAS  PubMed  Google Scholar 

  • Baskar S, Baskar R, Routh J (2014) Speleothems from Sahastradhara caves in Siwalik Himalaya, India: possible biogenic inputs. Geomicrobiol J 31(8):664–681

    Article  Google Scholar 

  • Baskar S, Routh J, Baskar R, Kumar A, Miettinen H, Itävaara M (2016) Evidences for microbial precipitation of calcite in speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrobiol J 33(10):906–933

    Article  CAS  Google Scholar 

  • Baskar S, Chalia S, Baskar R (2018) Calcite precipitation by Rhodococcus sp. isolated from Kotumsar cave, Chhattisgarh, India. Curr Sci 114(05):1063

    Article  CAS  Google Scholar 

  • Bastian F, Jurado V, Novakova A, Alabouvette C, Saiz-Jimenez C (2010) The microbiology of Lascaux Cave. Microbiology 156:644–652

    Article  CAS  PubMed  Google Scholar 

  • Beolchini F, Fonti V, Özdemiroğlu S, Akcil A, Dell’Anno A (2017) Sulphur-oxidising bacteria isolated from deep caves improve the removal of arsenic from contaminated harbour sediments. Chem Ecol 33(2):103–113

    Article  CAS  Google Scholar 

  • Bindschedler S, Milliere L, Cailleau G, Job D, Verrecchia EP (2012) An ultrastructural approach to analogies between fungal structures and needle fiber calcite. Geomicrobiol J 29:301–313

    Article  CAS  Google Scholar 

  • Borsato A, Frisia S, Jones B, Borg KVD (2000) Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. J Sediment Res 70:1179–1190

    Article  Google Scholar 

  • Brierley CL, Brierley J (2013) Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97:7543–7552

    Article  CAS  PubMed  Google Scholar 

  • Cañaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240

    Article  Google Scholar 

  • Ceci L, Lozano J (1998) Determination of enzymatic activities of commercial pectinases for the clarification of apple juice. Food Chem 61:237–241

    Article  CAS  Google Scholar 

  • Chalia S, Baskar S, Minakshi P, Baskar R, Ranjan K (2017) Biomineralization abilities of Cupriavidus strain and Bacillus subtilis strains in vitro isolated from speleothems, Rani cave, Chhattisgarh, India. Geomicrobiol J 34(9):737–752

    Article  CAS  Google Scholar 

  • Chelius MK, Beresford G, Horton H, Quirk M, Selby G, Simpson RT, Horrocks R, Moore JC (2009) Impacts of alterations of organic inputs on the bacterial community within the sediments of Wind Cave, South Dakota, USA. Int J Speleol 38:1–10

    Article  Google Scholar 

  • Cheeptham N (2013) Advances and challenges in studying cave microbial diversity. In: Cave microbiomes: a novel resource for drug discovery. Springer, New York, pp 1–34

    Chapter  Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62(1):11–17

    Google Scholar 

  • Cuzman OA, Rescic S, Richter K, Wittig L, Tiano P (2015) Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. J Biotechnol 214:49–56

    Article  CAS  PubMed  Google Scholar 

  • da Costa Souza PN, da Costa Maia N, Thomas AB, Batista LR, Ferreira RL, Cardoso PG (2013) Screening and identification of tannase-producing fungi isolated from Brazilian caves. Afr J Microbiol Res 7(6):483–487

    Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • De Souza PM (2010) Application of microbial α-amylase in industry – a review. Braz J Microbiol 4:850–861

    Article  Google Scholar 

  • Engel AS (2010) Microbial diversity of cave ecosystems. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, Dordrecht, pp 219–238

    Chapter  Google Scholar 

  • Engel AS (2011) Karst ecosystems. Encyclopedia of geobiology. Springer, Dordrecht, pp 521–531

    Book  Google Scholar 

  • Engel AS, Northup DE (2008) Caves and karst as model systems for advancing the microbial sciences. In Frontiers of Karst Research: Proceedings and recommendations of the workshop held in May (Vol. 3)

    Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 576

    Book  Google Scholar 

  • Frère JM, Rigali S (2016) The alarming increase in antibiotic-resistant bacteria. Drug Targets Rev 3:26–30

    Google Scholar 

  • Galvez A, Maqueda M, Martinez-Bueno M, Lebbadi M, Valdivia E (1993) Isolation and physico-chemical characterization of an antifungal and antibacterial peptide produced by Bacillus licheniformis A12. Appl Microbiol Biotechnol 39:438–442

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Kuisiene N, Cheeptham N (2017) The cave microbiome as a source for drug discovery: reality or pipe dream? Biochem Pharmacol 134:18–34

    Article  CAS  PubMed  Google Scholar 

  • Gurney JG, van Wijngaarden E (1999) Extremely low frequency electromagnetic fields (EMF) and brain cancer in adults and children: review and comment. NeuroOncol 1:212–220

    CAS  Google Scholar 

  • Gurtner C, Heyrman J, Piñar G, Lubitz W, Swings J, Rölleke S (2000) Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis. Int Biodeterior Biodegradation 46(3):229–239

    Article  CAS  Google Scholar 

  • Hamilton AJ, Gomez BL (2002) Melanins in fungal pathogens. J Med Microbiol 51(3):189–191

    Article  CAS  Google Scholar 

  • Harvey A (2000) Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 5:294–300

    Article  CAS  PubMed  Google Scholar 

  • Herold K, Gollmick FA, Groth I, Roth M, Menzel KD, Mollmann U, Grafe U, Hertweck C (2005) Cervimycin A-D: a polyketide glycoside complex from a cave bacterium can defeat vancomycin resistance. Chem-Eur J 11:5523–5530

    Article  CAS  PubMed  Google Scholar 

  • Hodges TW, Slattery M, Olson JB (2012) Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters. Mar Biotechnol 14:270–280

    Article  CAS  Google Scholar 

  • Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7:139–153

    Article  CAS  Google Scholar 

  • Jasinska EJ, Knott B, McComb AJ (1996) Root mats in ground water: a fauna-rich cave habitat. J N Am Benthol Soc 15(4):508–519

    Article  Google Scholar 

  • Jiang ZK, Guo L, Chen C, Liu SW, Zhang L, Dai SJ, He QY, You XF, Hu XX, Tuo L, Jiang W (2015) Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. J Antibot 68(12):771–774

    Article  CAS  Google Scholar 

  • Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6(1):158

    Article  CAS  PubMed  Google Scholar 

  • Jones DS, Schaperdoth I, Macalady JL (2014) Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms. Geomicrobiol J 31:194–204

    Article  CAS  Google Scholar 

  • Karkun A, Tiwari KL, Jadhav SK (2012) Fungal diversity of Mandeepkhol cave in Chhattisgarh, India. Adv Biores 3(2):119–123

    Google Scholar 

  • Kay S, Pathom-aree W, Cheeptham N (2013) Screening of volcanic cave actinomycetes for antimicrobial activity against Paenibacillus larvae, a honey bee pathogen. Chiang Mai J Sci 40:26–33

    Google Scholar 

  • Khizhnyak SV, Tausheva IV, Berezikova AA, Nesterenko YV, Rogozin DY (2003) Psychrophilic and psychrotolerant heterotrophic microorganisms of Middle Siberian Karst Cavities. Russ J Ecol 34(4):231–235

    Article  Google Scholar 

  • Klusaite A, Vickackaite V, Vaitkeviciene B, Karnickaite R, Bukelskis D, Kieraite-Aleksandrova I, Kuisiene N (2016) Characterization of antimicrobial activity of culturable bacteria isolated from Krubera-Voronja Cave. Int J Speleol 45(3):275–287

    Article  Google Scholar 

  • Knight V, Sanglier J-J, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458

    Article  CAS  PubMed  Google Scholar 

  • KoilRaj AJ, Marimuthu G, Natarajan K, Saravanan S, Maran P, Hsu MJ (1999) Fungal diversity inside caves of southern India. Curr Sci India 25:1081–1084

    Google Scholar 

  • KoilRaj AJ, Prabhavathi P, Rajendran R, Kuberan T, Gowri RS, Selvi CP (2012) Degradation of organic wastes and recycling of nutrients enhanced by microbes in subterranean habitat. Afr J Microbiol Res 6(21):4449–4456

    Google Scholar 

  • Kuddus M, Roohi JMA, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258

    Article  CAS  Google Scholar 

  • Kuzmin IV, Niezgoda M, Franka R, Agwanda B, Markotter W, Breiman RF, Shieh WJ, Zaki SR, Rupprecht CE (2010) Marburg Virus in Fruit Bat, Kenya. Emerg Infect Dis 16:352–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyle JE, Eydal HS, Ferris FG, Pedersen K (2008) Viruses in granitic groundwater from 69 to 450 m depth of the Aspö hard rock laboratory, Sweden. J Int Soc Microb Ecol 2:571–574

    Google Scholar 

  • Lamprinou V, Tryfinopoulou K, Velonakis EN, Vatapoulos N, Antonopoulou S, Fragopoulou E, Pantazodou A, Amilli AE (2015) Cave cyanobacteria showing antibacterial activity. Int J Speleol 44:231–238

    Article  Google Scholar 

  • Lavoie KH (2015) A grand, gloomy, and peculiar place: microbiology in the Mammoth Cave region. In: Life in extreme environments: microbial life of cave systems. DeGruyter, Berlin, pp 47–78

    Google Scholar 

  • Lee NM, Meisinger DB, Aubrecht R, Kovacik L, Saiz-Jimenez C, Baskar S, Baskar R, Liebl W, Porter ML, Engel AS (2012) 16 Caves and karst environments. In: Life at extremes: environments, organisms, and strategies for survival, vol 1. CAB International, Cambridge, MA, p 320

    Chapter  Google Scholar 

  • Lindner DL, Gargas A, Lorch JM, Banik MT, Glaeser J, Kunz TH, Blehert DS (2011) DNA-based detection of the fungal pathogen Geomyces destructans in soils from bat hibernacula. Mycologia 103(2):241–246

    Article  PubMed  Google Scholar 

  • Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9:1402–1414

    Article  CAS  PubMed  Google Scholar 

  • Maciejewska M, Pessi IS, Arguelles-Arias A, Noirfalise P, Luis G, Ongena M, Barton H, Carnol M, Rigali S (2015) Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem. Anton Leeuw 107(2):519–531

    Article  CAS  Google Scholar 

  • Maciejewska M, Adam D, Martinet L, Naômé A, Całusińska M, Delfosse P, Carnol M, Barton HA, Hayette M-P, Smargiasso N, De Pauw E, Hanikenne M, Baurain D, Rigali S (2016) A phenotypic and genotypic analysis of the antimicrobial potential of cultivable Streptomyces isolated from cave moonmilk deposits. Front Microbiol 7:1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Man B, Wang H, Xiang X, Wang R, Yun Y, Gong L (2015) Phylogenetic diversity of culturable fungi in the Heshang Cave, Central China. Front Microbiol 21(6):1158

    Google Scholar 

  • Mandal SD, Zothansanga S, Kumar NS (2014) Metagenomic analysis of bacterial community composition among the cave sediments of Indo-Burman biodiversity hotspot region. Peer J Preprints e631v1:1–30

    Google Scholar 

  • Maria de Lurdes N (2013) Cave biofilms and their potential for novel antibiotic discovery. In: Cheeptham N (ed) Cave microbiomes: a novel resource for drug discovery. Springer, New York, pp 35–45

    Google Scholar 

  • Mazina SE, Semikolennykh AA (2010) The genesis problem of different forms of moonmilk from Russian caves. Caves 33:34–44

    Google Scholar 

  • Moulder JE, Foster KR (1995) Biological effects of power-frequency fields as they relate to carcinogenesis. Proc Soc Exp Biol Med 209:309–324

    Article  CAS  Google Scholar 

  • Mudgil D, Baskar S, Baskar R, Paul D, Shouche YS (2018) Biomineralization potential of Bacillus subtilis, Rummeliibacillus stabekisii and Staphylococcus epidermidis strains in vitro isolated from speleothems, Khasi Hill caves, Meghalaya, India. Geomicrobiol J 13:1–20

    Google Scholar 

  • Mukherjee G, Banerjee R (2006) Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 22:207–212

    Article  CAS  Google Scholar 

  • Mulec J, Vaupotic J, Walochnik J (2012) Prokaryotic and eukaryotic airborne microorganisms as tracers of microclimatic changes in the underground (Postojna Cave, Slovenia). Environ Microbiol 64:654–667

    CAS  Google Scholar 

  • Nakaew N, Pathom-aree W, Lumyong S (2009) Generic diversity of rare actinomycetes from Thai cave soils and their possible use as new bioactive compounds. Actinomycetologica 23(2):21–26

    Article  CAS  Google Scholar 

  • Neuendorf S, Hedtke K, Tangen G, Genersch E (2004) Biochemical characterization of different genotypes of Paenibacillus larvae subsp. larvae, a honey bee bacterial pathogen. Microbiol J 150:2381–2390

    Article  CAS  Google Scholar 

  • Nimaichand S, Devi AM, Tamreihao K, Ningthoujam DS, Li WJ (2015) Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities. Front Microbiol 6:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Ningthoujam DS, Sanasam S, Nimaichand S (2009) Screening of actinomycete isolates from niche habitats in Manipur for antibiotic activity. Am J Biochem Biotechnol 5:221–225

    Article  Google Scholar 

  • Northup DE, Lavoie KH (2015) Microbial diversity and ecology of Lava caves. In: Engel AS (ed) Microbial life of cave systems. Walter de Gruyter, Berlin, pp 161–191

    Google Scholar 

  • Northup DE, Melim LA, Spilde MN, Hathaway JJM, Garcia MG, Moya M, Stone FD, Boston PJ, Dapkevicius MLNE, Riquelme C (2011) Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11(7):601–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novakova A (2009) Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int J Speleol 38(1):71–82

    Article  Google Scholar 

  • Omoregie AI, Senian N, Li PY, Hei NL, Leong DOE, Ginjom IRH, Nissom PM (2016) Screening for urease-producing bacteria from limestone caves of Sarawak. Born J Res Sci Technol 6(1):37–45

    Google Scholar 

  • Onac BP, Forti P (2011) Minerogenetic mechanisms occurring in the cave environment: an overview. Int J Speleol 40:79–98

    Article  Google Scholar 

  • Orme CA, Noy A, Wierzbicki A, McBride MT, Grantham M, Teng HH, Dove PM, DeYoreo JJ (2001) Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411:775–779

    Article  CAS  PubMed  Google Scholar 

  • Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, Wing RA, Soderlund CA, Pryor BM, Pierson LS, Maier RM (2013) Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. Microb Ecol 65:371–383

    Article  PubMed  Google Scholar 

  • Palmer C, Bik EM, Eisen MB, Eckburg PB, Sana TR, Wolber PK, Relman DA, Brown PO (2006) Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 34:e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastorelli AA, Baldini M, Stacchini P, Baldini G, Morelli S, Sagratella E, Zaza S, Ciardullo S (2012) Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: a pilot evaluation. Food Addit Contam Part A 29:1913–1921

    Article  CAS  Google Scholar 

  • Plath M, Tobler M, Riesch R, García de Léon FJ, Giere O, Schlupp I (2007) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94:991–996

    Article  CAS  PubMed  Google Scholar 

  • Porca E, Jurado V, Zgur-Bertok D, Saiz-Jimenez C, Pasic L (2012) Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation. FEMS Microbiol Ecol 81:255–266

    Article  CAS  PubMed  Google Scholar 

  • Portillo MC, Gonzalez JM (2011) Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain). Microb Ecol 61:182–189

    Article  PubMed  Google Scholar 

  • Pusz W, Ogórek R, Knapik R, Kozak B, Bujak H (2015) The occurrence of fungi in the recently discovered Jarkowicka Cave in the Karkonosze Mts., Poland. Geomicrobiol J 32:5967

    Article  Google Scholar 

  • Radhakrishnan M, Raman VA, Bharathi S, Balagurunathan R, Kumar V (2014) Anti MRSA and antitubercular activity of phenoxazinone containing molecule from Borra Caves Streptomyces sp. BCA1. Int J Pharm Sci Res 5(12):5342–5348

    Google Scholar 

  • Rajput Y, Biswas J (2012) Subterranean depth dependent protein constitutions of the Micrococcus sp., isolated from the Kotumsar Cave, India. Asian J Biochem 7(2):90–97

    Article  CAS  Google Scholar 

  • Rajput Y, Rai V, Biswas J (2012a) Screening of bacterial isolates from various microhabitat sediments of Kotumsar cave: a cogitation on their respective benefits and expected threats for complete biosphere and tourists. Res J Environ Toxicol 6(1):13–24

    Article  Google Scholar 

  • Rajput Y, Biswas J, Rai V (2012b) Potentiality test in antimicrobial activity and antibiotic sensitivity of subterranean Streptomyces strains isolated from Kotumsar Cave of India. Int J Biol Chem 6(2):53–60

    Article  Google Scholar 

  • Rajput Y, Neral A, Biswas J (2014) Subterranean depth dependent the modulation of endo and exoenzyme secretion in Streptomyces prasinosporus: a common soil actinomycete of india. J Pure Appl Microbiol 8(6):4601–4608

    Google Scholar 

  • Rautela R, Rawat S, Rawat R, Verma P, Bhatt AB (2017) Microbial diversity of Gumki cave and their potential role in enzyme production. Environ Conserv 18(3):115–122

    CAS  Google Scholar 

  • Reid I, Ricard M (2000) Pectinase in paper making solving retention problems in mechanical pulps bleached with hydrogen peroxide. Enzym Microb Technol 26:115–123

    Article  CAS  Google Scholar 

  • Reinbacher WR (1994) Is it genome, is it berg, is it mont, is it mond? An updated view of the origin and etymology of moonmilk. NSS Bull 56:1–13

    Google Scholar 

  • Riquelme C, Dapkevicius MD, Miller AZ, Charlop-Powers Z, Brady S, Mason C, Cheeptham N (2017) Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. Appl Microbiol Biotechnol 101:843–857

    Article  CAS  PubMed  Google Scholar 

  • Roemer T, Davies J, Giaver G, Nislow C (2012) Bugs, drugs and chemical genomics. Nat Chem Biol 8:46–56

    Article  CAS  Google Scholar 

  • Romero A (2009) Cave biology: life in darkness. Cambridge University Press, Cambridge, p 306

    Book  Google Scholar 

  • Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins JA (2012) Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc Natl Acad Sci U S A 109(39):15835–15840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seufferheld M, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro J, Pringle A (2010) Anthropogenic influences on the diversity of fungi isolated from caves in Kentucky and Tennessee. Am Midl Nat 163(1):76–86

    Article  Google Scholar 

  • Sharma R, Ranjan R, Kapardar RK, Grover A (2005) ‘Unculturable’ bacterial diversity: an untapped resource. Curr Sci 89:72–77

    CAS  Google Scholar 

  • Sheikh GA, Dar IY, Pandit AK (2013) Assessment of geochemical characteristics and geomicrobiology of cave spring water from Jaintia and East Khasi Hills of Meghalaya, India. Ecologia Balkanica 1:5(1)

    Google Scholar 

  • Stutzenberger F (1992) Pectinase production. Encyclopedia of microbiology, vol 3. Academy, New York, pp 327–337

    Google Scholar 

  • Taylor MR (1999) Dark life: Martian Nanobacteria, Rock-Eating Cave Bugs, and other extreme organisms of inner earth and outer space. Scribner, New York

    Google Scholar 

  • Tomova I, Lazarkevich I, Tomova A, Kambourova M, Vasileva-Tonkova E (2013) Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. Int J Speleol 42(1):65–76

    Article  Google Scholar 

  • Vanderwolf K, Malloch D, McAlpine D, Forbes G (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42(1):77–96

    Article  Google Scholar 

  • Varela AR, Dapkevicius MLNE, Northup DE (2009) Microorganisms isolated from Azorean lava tubes have antimicrobial activity towards food-borne pathogens. In: Proceedings of the 9th food chemistry meeting of the Portuguese Society for Chemistry, Angra de Heroismo, Portugal, pp 146–152

    Google Scholar 

  • Vaughan-Martini A, Angelini P, Zacchi L (2000) The influence of human and animal visitation on the yeast ecology of three Italian caverns. Ann Microbiol 50:133–140

    Google Scholar 

  • Velikonja BH, Tkavc R, Pašic´ L (2014) Diversity of cultivable bacteria involved in the formation of macroscopic microbial colonies (cave silver) on the walls of a cave in Slovenia. Int J Speleol 43:45–56

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Tan L, Liu W, Wang B, Wang J, Cai Y, Lin X (2015) Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front Microbiol 6:244

    PubMed  PubMed Central  Google Scholar 

  • Yousif A, Zhang J, Mulcahy F, Singh OV (2015) Bio-economics of melanin biosynthesis using electromagnetic field resistant Streptomyces sp.-EF1 isolated from cave soil. Ann Microbiol 65(3):1573–1582

    Article  CAS  Google Scholar 

  • Yücel SEMRA, Yamaç MUSTAFA (2010) Selection of Streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms. Pak J Pharm Sci 23(1):1–6

    PubMed  Google Scholar 

  • Zhang L (2005) Integrated approaches for discovering novel drugs from microbial natural products. In: Zhang L, Demain AL (eds) Natural products. Drug discovery and therapeutic medicine. Humana, Totowa, pp 33–55

    Google Scholar 

  • Zhang Y, Guo HX, Cheng XH (2015) Role of calcium sources in the strength and microstructure of microbial mortar. Constr Build Mater 77:160–167

    Article  Google Scholar 

Download references

Acknowledgements

SB would like to acknowledge the financial assistance received from the Science and Engineering Research Board (SERB), Government of India, in the form of National Postdoctoral Fellowship (N-PDF) Vide Sanction No. PDF/2017/001697.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Jha, D.K., Joshi, S.R. (2019). Cave Microbiome for Human Welfare. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_1

Download citation

Publish with us

Policies and ethics