Skip to main content

What’s New in Functional Tests for Glaucoma

  • Chapter
  • First Online:
Book cover Glaucoma

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 971 Accesses

Abstract

The main goal of various treatment modalities for glaucoma is to preserve functional vision of the patient. Functional tests help the physician understand how the patients with glaucoma see the world and what difficulties they are likely to face in their day-to-day life. Additionally, this information helps in development of visual aids that help improve quality of life of glaucoma patients. This chapter reviews the recent advances in the available functional tests such as the contrast sensitivity tests, perimetry, and electrophysiologic and color vision tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richman J, Lorenzana LL, Lankaranian D, Dugar J, Mayer J, Wizov SS, et al. Importance of visual acuity and contrast sensitivity in patients with glaucoma. Arch Ophthalmol. 2010;128(12):1576–82.

    Article  PubMed  Google Scholar 

  2. Velten IM, Korth M, Horn FK, Budde WM. Temporal contrast sensitivity with peripheral and central stimulation in glaucoma diagnosis. Br J Ophthalmol. 1999;83(2):199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hawkins AS, Szlyk JP, Ardickas Z, Alexander KR, Wilensky JT. Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. J Glaucoma. 2003;12(2):134–8.

    Article  PubMed  Google Scholar 

  4. Wilensky JT, Hawkins A. Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. Trans Am Ophthalmol Soc. 2001;99:213.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ginsburg AP. Contrast sensitivity and functional vision. Int Ophthalmol Clin. 2003;43(2):5–15.

    Article  PubMed  Google Scholar 

  6. Erb C. Functional disorders in the chronological progression of glaucoma. Ophthalmologe. 2015;112(5):402–9.

    Article  PubMed  Google Scholar 

  7. Stamper R. Psychophysical changes in glaucoma. Surv Ophthalmol. 1989;33:309–18.

    PubMed  Google Scholar 

  8. Lundh BL. Central and peripheral contrast sensitivity for static and dynamic sinusoidal gratings in glaucoma. Acta Ophthalmol. 1985;63(5):487–92.

    Article  CAS  Google Scholar 

  9. Hot A, Dul MW, Swanson WH. Development and evaluation of a contrast sensitivity perimetry test for patients with glaucoma. Invest Ophthalmol Vis Sci. 2008;49(7):3049–57.

    Article  PubMed  Google Scholar 

  10. Stamper R. The effect of glaucoma on central visual function. Trans Am Ophthalmol Soc. 1984;82:792.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Richman J, Spaeth GL, Wirostko B. Contrast sensitivity basics and a critique of currently available tests. J Cataract Refract Surg. 2013;39(7):1100–6.

    Article  PubMed  Google Scholar 

  12. Lahav K, Levkovitch-Verbin H, Belkin M, Glovinsky Y, Polat U. Reduced mesopic and photopic foveal contrast sensitivity in glaucoma. Arch Ophthalmol. 2011;129(1):16–22.

    Article  PubMed  Google Scholar 

  13. Stamper RL, Hsu-Winges C, Sopher M. Arden contrast sensitivity testing in glaucoma. Arch Ophthalmol. 1982;100(6):947–50.

    Article  CAS  PubMed  Google Scholar 

  14. Onal S, Yenice O, Cakir S, Temel A. FACT contrast sensitivity as a diagnostic tool in glaucoma. Int Ophthalmol. 2008;28(6):407–12.

    Article  PubMed  Google Scholar 

  15. Kingsnorth A, Drew T, Grewal B, Wolffsohn JS. Mobile app Aston contrast sensitivity test. Clin Exp Optom. 2016;99(4):350–5.

    Article  PubMed  Google Scholar 

  16. Rodríguez-Vallejo M, Remón L, Monsoriu JA, Furlan WD. Designing a new test for contrast sensitivity function measurement with iPad. J Optom. 2015;8(2):101–8.

    Article  PubMed  Google Scholar 

  17. Richman J, Zangalli C, Lu L, Wizov SS, Spaeth E, Spaeth GL. The Spaeth/Richman contrast sensitivity test (SPARCS): design, reproducibility and ability to identify patients with glaucoma. Br J Ophthalmol. 2015;99(1):16–20.

    Article  PubMed  Google Scholar 

  18. Spaeth G, Richman J. SPARCS: a new method of evaluating contrast sensitivity in patients with glaucoma. Acta Ophthalmol. 2012;90(s249):0.

    Google Scholar 

  19. Friström B. Colour contrast sensitivity in ocular hypertension. A five‐year prospective study. Acta Ophthalmol. 2002;80(2):155–62.

    Article  Google Scholar 

  20. Wood JM, Lovie-Kitchin JE. Evaluation of the efficacy of contrast sensitivity measures for the detection of early primary open-angle glaucoma. Optom Vis Sci. 1992;69(3):175–81.

    Article  CAS  PubMed  Google Scholar 

  21. Sample PA, Juang PS, Weinreb RN. Isolating the effects of primary open-angle glaucoma on the contrast sensitivity function. Am J Ophthalmol. 1991;112(3):308–16.

    Article  CAS  PubMed  Google Scholar 

  22. Amanullah S, Okudolo J, Rahmatnejad K, Lin S-C, Wizov SS, Muhire RSM, et al. The relationship between contrast sensitivity and retinal nerve fiber layer thickness in patients with glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255(12):2415–22.

    Article  PubMed  Google Scholar 

  23. Sun Y, Erdem E, Lyu A, Zangalli C, Wizov SS, Lo D, et al. The SPARCS: a novel assessment of contrast sensitivity and its reliability in patients with corrected refractive error. Br J Ophthalmol. 2016;100(10):1421–6.

    Article  PubMed  Google Scholar 

  24. Faria B, Duman F, Ali M, Zangalli C, Wizov S, Lu L, et al. Spaeth/Richman contrast sensitivity test in macular degeneration. Invest Ophthalmol Vis Sci. 2013;54(15):5024.

    Google Scholar 

  25. Faria BM, Duman F, Zheng CX, Waisbourd M, Gupta L, Ali M, et al. Evaluating contrast sensitivity in age-related macular degeneration using a novel computer-based test, the Spaeth/Richman contrast sensitivity test. Retina. 2015;35(7):1465–73.

    Article  PubMed  Google Scholar 

  26. Gupta L, Cvintal V, Delvadia R, Sun Y, Erdem E, Zangalli C, et al. SPARCS and Pelli–Robson contrast sensitivity testing in normal controls and patients with cataract. Eye. 2017;31(5):753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ekici F, Loh R, Waisbourd M, Sun Y, Martinez P, Nayak N, et al. Relationships between measures of the ability to perform vision-related activities, vision-related quality of life, and clinical findings in patients with glaucoma. JAMA Ophthalmol. 2015;133(12):1377–85.

    Article  PubMed  Google Scholar 

  28. Waisbourd M, Parker S, Ekici F, Martinez P, Murphy R, Scully K, et al. A prospective, longitudinal, observational cohort study examining how glaucoma affects quality of life and visually-related function over 4 years: design and methodology. BMC Ophthalmol. 2015;15(1):91.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gandolfi SA, Cimino L, Sangermani C, Ungaro N, Mora P, Tardini MG. Improvement of spatial contrast sensitivity threshold after surgical reduction of intraocular pressure in unilateral high-tension glaucoma. Invest Ophthalmol Vis Sci. 2005;46(1):197–201.

    Article  PubMed  Google Scholar 

  30. Evans D, Hosking S, Gherghel D, Bartlett J. Contrast sensitivity improves after brimonidine therapy in primary open angle glaucoma: a case for neuroprotection. Br J Ophthalmol. 2003;87(12):1463–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris A, Arend O, Kagemann L, Garrett M, Chung HS, Martin B. Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma. J Ocul Pharmacol Ther. 1999;15(3):189–97.

    Article  CAS  PubMed  Google Scholar 

  32. Arend O, Harris A, Wolter P, Remky A. Evaluation of retinal haemodynamics and retinal function after application of dorzolamide, timolol and latanoprost in newly diagnosed open-angle glaucoma patients. Acta Ophthalmol Scand. 2003;81(5):474–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gugleta K. Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension. Curr Med Res Opin. 2010;26(6):1255–67.

    Article  CAS  PubMed  Google Scholar 

  34. Ianchulev T, Pham P, Makarov V, Francis B, Minckler D. Peristat: a computer-based perimetry self-test for cost-effective population screening of glaucoma. Curr Eye Res. 2005;30(1):1–6.

    Article  PubMed  Google Scholar 

  35. Lowry EA, Hou J, Hennein L, Chang RT, Lin S, Keenan J, et al. Comparison of peristat online perimetry with the humphrey perimetry in a clinic-based setting. Transl Vis Sci Technol. 2016;5(4):4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Johnson C, Robin A, Thapa S. Visual field screening to detect glaucoma and diabetic retinopathy in Nepal using an iPad application program. Orlando, FL: American Academy Optometry; 2014.

    Google Scholar 

  37. Johnson CA, Thapa S, Kong YXG, Robin AL. Performance of an iPad application to detect moderate and advanced visual field loss in Nepal. Am J Ophthalmol. 2017;182:147–54.

    Article  PubMed  Google Scholar 

  38. Santos A, Morabe E. “VisualFields Easy”: an iPad application as a simple tool for detecting visual field defects. Phillip J Ophthalmol. 2016;41:22–6.

    Google Scholar 

  39. Vingrys AJ, Healey JK, Liew S, Saharinen V, Tran M, Wu W, et al. Validation of a tablet as a tangent perimeter. Transl Vis Sci Technol. 2016;5(4):3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schulz AM, Graham EC, You Y, Klistorner A, Graham SL. Performance of iPad‐based threshold perimetry in glaucoma and controls. Clin Experiment Ophthalmol. 2017.

    Google Scholar 

  41. Kong YXG, He M, Crowston JG, Vingrys AJ. A comparison of perimetric results from a tablet perimeter and Humphrey field analyzer in glaucoma patients. Transl Vis Sci Technol. 2016;5(6):2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nakanishi M, Wang Y-T, Jung T-P, Zao JK, Chien Y-Y, Diniz-Filho A, et al. Detecting glaucoma with a portable brain-computer interface for objective assessment of visual function loss. JAMA Ophthalmol. 2017;135(6):550–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rossetti L, Digiuni M, Rosso A, Riva R, Barbaro G, Smolek MK, et al. Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma. PLoS One. 2015;10(3):e0122157.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Rao HL, Raveendran S, James V, Dasari S, Palakurthy M, Reddy HB, et al. Comparing the performance of compass perimetry with humphrey field analyzer in eyes with glaucoma. J Glaucoma. 2017;26(3):292–7.

    Article  PubMed  Google Scholar 

  45. Matsuura M, Murata H, Fujino Y, Hirasawa K, Yanagisawa M, Asaoka R. Evaluating the usefulness of MP-3 microperimetry in glaucoma patients. Am J Ophthalmol. 2018;187:1–9.

    Article  PubMed  Google Scholar 

  46. Palkovits S, Hirnschall N, Georgiev S, Leisser C, Findl O. Test–retest reproducibility of the microperimeter MP3 with fundus image tracking in healthy subjects and patients with macular disease. Transl Vis Sci Technol. 2018;7(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hirooka K, Misaki K, Nitta E, Ukegawa K, Sato S, Tsujikawa A. Comparison of macular integrity assessment (MAIA™), MP-3, and the humphrey field analyzer in the evaluation of the relationship between the structure and function of the macula. PLoS One. 2016;11(3):e0151000.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Sato S, Hirooka K, Baba T, Tenkumo K, Nitta E, Shiraga F. Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci. 2013;54(4):3046–51.

    Article  PubMed  Google Scholar 

  49. Rao HL, Januwada M, Hussain RS, Pillutla LN, Begum VU, Chaitanya A, et al. Comparing the structure–function relationship at the macula with standard automated perimetry and microperimetry. Invest Ophthalmol Vis Sci. 2015;56(13):8063–8.

    Article  CAS  PubMed  Google Scholar 

  50. Horner DG, Dul MW, Swanson WH, Liu T, Tran I. Blur-resistant perimetric stimuli. Optometry and vision science: official publication of the. Am Acad Optom. 2013;90(5):466.

    Article  Google Scholar 

  51. Swanson WH, Dul MW, Horner DG, Liu T, Tran I. Assessing spatial and temporal properties of perimetric stimuli for resistance to clinical variations in retinal illumination. Invest Ophthalmol Vis Sci. 2014;55(1):353–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Swanson WH, Malinovsky VE, Dul MW, Malik R, Torbit JK, Sutton BM, et al. Contrast sensitivity perimetry and clinical measures of glaucomatous damage. Optom Vis Sci. 2014;91(11):1302.

    Article  PubMed  PubMed Central  Google Scholar 

  53. el-Khoury S, Hannen T, Dragnea DC, Ngounou F, Preußner P-R. Pattern noise (PANO): a new automated functional glaucoma test. Int Ophthalmol. 2018;38:1993–2003.

    Article  PubMed  Google Scholar 

  54. Nouri-Mahdavi K, Zarei R, Caprioli J. Influence of visual field testing frequency on detection of glaucoma progression with trend analyses. Arch Ophthalmol. 2011;129(12):1521–7.

    Article  PubMed  Google Scholar 

  55. Gardiner S, Crabb D. Frequency of testing for detecting visual field progression. Br J Ophthalmol. 2002;86(5):560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu Z, Saunders LJ, Daga FB, Diniz-Filho A, Medeiros FA. Frequency of testing to detect visual field progression derived using a longitudinal cohort of glaucoma patients. Ophthalmology. 2017;124(6):786–92.

    Article  PubMed  Google Scholar 

  57. Anderson AJ. Significant glaucomatous visual field progression in the first two years: what does it mean? Transl Vis Sci Technol. 2016;5(6):1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Anderson AJ, Bedggood PA, Kong YXG, Martin KR, Vingrys AJ. Can home monitoring allow earlier detection of rapid visual field progression in glaucoma? Ophthalmology. 2017;124(12):1735–42.

    Article  PubMed  Google Scholar 

  59. Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, Cirineo N, Knipping S, Giaconi J, et al. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156(6):1297–307.e2.

    Article  PubMed  Google Scholar 

  60. Arvanitaki V, Tsilimbaris MK, Pallikaris A, Moschandreas I, Minos E, Pallikaris IG, et al. Macular retinal and nerve fiber layer thickness in early glaucoma: clinical correlations. M E Afr J Ophthalmol. 2012;19(2):204.

    Article  Google Scholar 

  61. Springelkamp H, Lee K, Wolfs RC, Buitendijk GH, Ramdas WD, Hofman A, et al. Population-based evaluation of retinal nerve fiber layer, retinal ganglion cell layer, and inner plexiform layer as a diagnostic tool for glaucoma. Invest Ophthalmol Vis Sci. 2014;55(12):8428–38.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hood DC, Raza AS, de Moraes CGV, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.

    Article  PubMed  Google Scholar 

  63. Hood DC, Nguyen M, Ehrlich AC, Raza AS, Sliesoraityte I, De Moraes CG, et al. A test of a model of glaucomatous damage of the macula with high-density perimetry: implications for the locations of visual field test points. Transl Vis Sci Technol. 2014;3(3):5.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hood DC, Raza AS, de Moraes CGV, Odel JG, Greenstein VC, Liebmann JM, et al. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(2):940–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Invest Ophthalmol Vis Sci. 2014;55(2):632–49.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Traynis I, De Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC. Prevalence and nature of early glaucomatous defects in the central 10 of the visual field. JAMA Ophthalmol. 2014;132(3):291–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Abe RY, Diniz-Filho A, Costa VP, Gracitelli CP, Baig S, Medeiros FA. The impact of location of progressive visual field loss on longitudinal changes in quality of life of patients with glaucoma. Ophthalmology. 2016;123(3):552–7.

    Article  PubMed  Google Scholar 

  68. Sun Y, Lin C, Waisbourd M, Ekici F, Erdem E, Wizov SS, et al. The impact of visual field clusters on performance-based measures and vision-related quality of life in patients with glaucoma. Am J Ophthalmol. 2016;163:45–52.

    Article  PubMed  Google Scholar 

  69. Blumberg DM, De Moraes CG, Prager AJ, Yu Q, Al-Aswad L, Cioffi GA, et al. Association between undetected 10-2 visual field damage and vision-related quality of life in patients with glaucoma. JAMA Ophthalmol. 2017;135(7):742–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grillo LM, Wang DL, Ramachandran R, Ehrlich AC, De Moraes CG, Ritch R, et al. The 24-2 visual field test misses central macular damage confirmed by the 10-2 visual field test and optical coherence tomography. Transl Vis Sci Technol. 2016;5(2):15.

    Article  PubMed  PubMed Central  Google Scholar 

  71. De Moraes CG, Hood DC, Thenappan A, Girkin CA, Medeiros FA, Weinreb RN, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124(10):1449–56.

    Article  PubMed  Google Scholar 

  72. Park H-YL, Hwang B-E, Shin H-Y, Park CK. Clinical clues to predict the presence of parafoveal scotoma on Humphrey 10-2 visual field using a Humphrey 24-2 visual field. Am J Ophthalmol. 2016;161:150–9.

    Article  PubMed  Google Scholar 

  73. Sullivan-Mee M, Tran MTK, Pensyl D, Tsan G, Katiyar S. Prevalence, features, and severity of glaucomatous visual field loss measured with the 10-2 achromatic threshold visual field test. Am J Ophthalmol. 2016;168:40–51.

    Article  PubMed  Google Scholar 

  74. Leblanc RP, Becker B. Peripheral nasal field defects. Am J Ophthalmol. 1971;72(2):415–9.

    Article  CAS  PubMed  Google Scholar 

  75. Caprioli J, Spaeth GL. Static threshold examination of the peripheral nasal visual field in glaucoma. Arch Ophthalmol. 1985;103(8):1150–4.

    Article  CAS  PubMed  Google Scholar 

  76. Mönter VM, Crabb DP, Artes PH. Reclaiming the periphery: automated kinetic perimetry for measuring peripheral visual fields in patients with glaucoma. Invest Ophthalmol Vis Sci. 2017;58(2):868–75.

    Article  PubMed  Google Scholar 

  77. Freeman EE, Munoz B, Rubin G, West SK. Visual field loss increases the risk of falls in older adults: the Salisbury eye evaluation. Invest Ophthalmol Vis Sci. 2007;48(10):4445–50.

    Article  PubMed  Google Scholar 

  78. Odden JL, Mihailovic A, Boland MV, Friedman DS, West SK, Ramulu PY. Evaluation of central and peripheral visual field concordance in glaucoma. Invest Ophthalmol Vis Sci. 2016;57(6):2797–804.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schiefer U, Papageorgiou E, Sample PA, Pascual JP, Selig B, Krapp E, et al. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51(11):5685–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nevalainen J, Paetzold J, Papageorgiou E, Sample PA, Pascual JP, Krapp E, et al. Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements. Graefes Arch Clin Exp Ophthalmol. 2009;247(12):1659.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schiefer U, Flad M, Stumpp F, Malsam A, Paetzold J, Vonthein R, et al. Increased detection rate of glaucomatous visual field damage with locally condensed grids: a comparison between fundus-oriented perimetry and conventional visual field examination. Arch Ophthalmol. 2003;121(4):458–65.

    Article  PubMed  Google Scholar 

  82. Schiefer U, Malsam A, Flad M, Stumpp F, Dietrich TJ, Paetzold J, et al. Evaluation of glaucomatous visual field loss with locally condensed grids using fundus-oriented perimetry (FOP). Eur J Ophthalmol. 2001;11(Suppl 2):S57–62.

    Article  PubMed  Google Scholar 

  83. Schiefer U, Benda N, Dietrich TJ, Selig B, Hofmann C, Schiller J. Angioscotoma detection with fundus-oriented perimetry. A study with dark and bright stimuli of different sizes. Vision Res. 1999;39(10):1897–909.

    Article  CAS  PubMed  Google Scholar 

  84. Nakatani Y, Ohkubo S, Higashide T, Iwase A, Kani K, Sugiyama K. Detection of visual field defects in pre-perimetric glaucoma using fundus-oriented small-target perimetry. Jpn J Ophthalmol. 2012;56(4):330–8.

    Article  PubMed  Google Scholar 

  85. Chong LX, Turpin A, McKendrick AM. Assessing the GOANNA visual field algorithm using artificial scotoma generation on human observers. Transl Vis Sci Technol. 2016;5(5):1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chong LX, McKendrick AM, Ganeshrao SB, Turpin A. Customized, automated stimulus location choice for assessment of visual field defects. Invest Ophthalmol Vis Sci. 2014;55(5):3265–74.

    Article  PubMed  Google Scholar 

  87. Rubinstein NJ, McKendrick AM, Turpin A. Incorporating spatial models in visual field test procedures. Transl Vis Sci Technol. 2016;5(2):7.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wild D, Kucur ŞS, Sznitman R. Spatial entropy pursuit for fast and accurate perimetry testing. Invest Ophthalmol Vis Sci. 2017;58(9):3414–24.

    Article  PubMed  Google Scholar 

  89. Denniss J, McKendrick AM, Turpin A. Towards patient-tailored perimetry: automated perimetry can be improved by seeding procedures with patient-specific structural information. Transl Vis Sci Technol. 2013;2(4):3.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ganeshrao SB, McKendrick AM, Denniss J, Turpin A. A perimetric test procedure that uses structural information. Optom Vis Sci. 2015;92(1):70–82.

    Article  PubMed  Google Scholar 

  91. Asman P, Heijl A. Arcuate cluster analysis in glaucoma perimetry. J Glaucoma. 1993;2(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  92. Nouri-Mahdavi K, Mock D, Hosseini H, Bitrian E, Yu F, Afifi A, et al. Pointwise rates of visual field progression cluster according to retinal nerve fiber layer bundles. Invest Ophthalmol Vis Sci. 2012;53(4):2390–4.

    Article  PubMed  Google Scholar 

  93. Hirasawa K, Murata H, Hirasawa H, Mayama C, Asaoka R. Clustering visual field test points based on rates of progression to improve the prediction of future damage. Invest Ophthalmol Vis Sci. 2014;55(11):7681–5.

    Article  PubMed  Google Scholar 

  94. Hirasawa K, Murata H, Asaoka R. Revalidating the usefulness of a “sector-wise regression” approach to predict glaucomatous visual function progression. Invest Ophthalmol Vis Sci. 2015;56(8):4332–5.

    Article  PubMed  Google Scholar 

  95. Mandava S, Zulauf M, Zeyen T, Caprioli J. An evaluation of clusters in the glaucomatous visual field. Am J Ophthalmol. 1993;116(6):684–91.

    Article  CAS  PubMed  Google Scholar 

  96. Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30 degrees visual field in glaucoma. Ophthalmology. 1993;100(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  97. Aoki S, Murata H, Fujino Y, Matsuura M, Miki A, Tanito M, et al. Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma. Br J Ophthalmol. 2017;101(12):1658–65.

    Article  PubMed  Google Scholar 

  98. Gardiner SK, Mansberger SL, Demirel S. Detection of functional change using cluster trend analysis in glaucoma. Invest Ophthalmol Vis Sci. 2017;58(6):BIO180–BIO90.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhu H, Russell RA, Saunders LJ, Ceccon S, Garway-Heath DF, Crabb DP. Detecting changes in retinal function: analysis with non-stationary Weibull error regression and spatial enhancement (ANSWERS). PLoS One. 2014;9(1):e85654.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Zhu H, Crabb DP, Ho T, Garway-Heath DF. More accurate modeling of visual field progression in glaucoma: ANSWERS. Invest Ophthalmol Vis Sci. 2015;56(10):6077–83.

    Article  PubMed  Google Scholar 

  101. Yousefi S, Goldbaum MH, Varnousfaderani ES, Belghith A, Jung T-P, Medeiros FA, et al. Detecting glaucomatous change in visual fields: analysis with an optimization framework. J Biomed Inform. 2015;58:96–103.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yousefi S, Balasubramanian M, Goldbaum MH, Medeiros FA, Zangwill LM, Weinreb RN, et al. Unsupervised Gaussian mixture-model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields. Transl Vis Sci Technol. 2016;5(3):2.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Warren JL, Mwanza J-C, Tanna AP, Budenz DL. A statistical model to analyze clinician expert consensus on glaucoma progression using spatially correlated visual field data. Transl Vis Sci Technol. 2016;5(4):14.

    Article  PubMed  PubMed Central  Google Scholar 

  104. https://www.zeiss.com/content/dam/Meditec/downloads/pdf/forum-help/fgw/G_30_1911_v2_3_en_FORUM_Glaucoma_Workplace_V2_0.pdf. Accessed on 12 Jun 2018.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vahedian, Z., Fakhraie, G. (2019). What’s New in Functional Tests for Glaucoma. In: Ichhpujani, P. (eds) Glaucoma. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-8457-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8457-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8456-1

  • Online ISBN: 978-981-13-8457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics