Skip to main content

Multifield Coupling

  • Chapter
  • First Online:
Solvation Dynamics

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 121))

  • 375 Accesses

Abstract

Transiting the NaX/H2O solutions from liquid into ice VI (at PC1) and then into ice VII (PC2) phase at 298 K needs excessive pressures with respect to the same sequence of phase transition for pure water. PC1 and PC2 vary simultaneously with the solute type in the Hofmeister series order: I > Br > Cl > F ~ 0. However, the PC1 grows faster than the PC2 with the increase of NaI/H2O concentration, following the (P, T) path upwardly along the Liquid-VI phase boundary. The PC1 and PC2 meet then at the Liquid-VI-VII triple-phase junction at 3.3 GPa and 350 K. Observations confirmed that compression recovers the electrification-elongated O:H–O bond first and then proceeds the phase transitions, which requires excessive energy for the same sequence of phase transitions. Heating enhances the effect of salting on bond relaxation but opposite on polarization that dictates the surface stress of the solution. It is also confirmed that molecular undercoordination disperses the quasisolid phase boundaries and the room-temperature ice-quasisolid phase transition needs excessive pressure. Polarization by salt solvation and skin undercoordination and boundary reflection transit the phonon abundance-lifetime-stiffness cooperatively. An extension of the HB and anti-HB or super-HB clarifies the energetic storage and structural stability for the spontenous and constrained explosion of energetic carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.M. Levering, M.R. Sierra-Hernández, H.C. Allen, Observation of hydronium ions at the air–aqueous acid interface: vibrational spectroscopic studies of aqueous HCl, HBr, and HI. J. Phys. Chem. C 111(25), 8814–8826 (2007)

    Article  CAS  Google Scholar 

  2. L.M. Pegram, M.T. Record, Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. J. Phys. Chem. B 111(19), 5411–5417 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. R.K. Ameta, M. Singh, Surface tension, viscosity, apparent molal volume, activation viscous flow energy and entropic changes of water + alkali metal phosphates at T = (298.15, 303.15, 308.15) K. J. Mol. Liq. 203: 29–38 (2015)

    Article  CAS  Google Scholar 

  4. P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev, 112(4): 2286–322 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. X.P. Li, K. Huang, J.Y. Lin, Y.Z. Xu, H.Z. Liu, Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution. Prog. Chem. 26(8), 1285–1291 (2014)

    CAS  Google Scholar 

  7. E.K. Wilson, Hofmeister Still Mystifies. C&EN Arch. 90(29), 42–43 (2012)

    Article  Google Scholar 

  8. Y.R. Xu, L. Li, P.J. Zheng, Y.C. Lam, X. Hu, Controllable gelation of methylcellulose by a salt mixture. Langmuir 20(15), 6134–6138 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. M. van der Linden, B.O. Conchúir, E. Spigone, A. Niranjan, A. Zaccone, P. Cicuta, Microscopic origin of the Hofmeister effect in gelation kinetics of colloidal silica. J. Phys. Chem. Lett. 2881–2887 (2015)

    Google Scholar 

  10. F. Aliotta, M. Pochylski, R. Ponterio, F. Saija, G. Salvato, C. Vasi, Structure of bulk water from Raman measurements of supercooled pure liquid and LiCl solutions. Phys. Rev. B 86(13), 134301 (2012)

    Article  CAS  Google Scholar 

  11. W.-T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energy Environ. Sci. 4(3), 627–655 (2011)

    Article  CAS  Google Scholar 

  12. M. Benoit, D. Marx, M. Parrinello, Tunnelling and zero-point motion in high-pressure ice. Nature 392(6673), 258–261 (1998)

    Article  CAS  Google Scholar 

  13. D. Kang, J. Dai, Y. Hou, J. Yuan, Structure and vibrational spectra of small water clusters from first principles simulations. J. Chem. Phys. 133(1), 014302 (2010)

    Article  PubMed  CAS  Google Scholar 

  14. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem Sci 3, 1455–1460 (2012)

    Article  CAS  Google Scholar 

  15. S. Chen, Z. Xu, J. Li, The observation of oxygen-oxygen interactions in ice. New J. Phys. 18(2), 023052 (2016)

    Article  CAS  Google Scholar 

  16. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. X. Zhang, S. Chen, J. Li, Hydrogen-bond potential for ice VIII-X phase transition. Sci Rep 6, 37161 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. P. Pruzan, J.C. Chervin, E. Wolanin, B. Canny, M. Gauthier, M. Hanfland, Phase diagram of ice in the VII-VIII-X domain. Vibrational and structural data for strongly compressed ice VIII. J. Raman Spectrosc. 34(7–8): 591-610 (2003)

    Article  CAS  Google Scholar 

  20. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, K. Aoki, Infrared absorption study of Fermi resonance and hydrogen-bond symmetrization of ice up to 141 GPa. Phys. Rev. B 60(18), 12644 (1999)

    Article  CAS  Google Scholar 

  21. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, ice VII, and Ice VIII under Pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Yoshimura, S.T. Stewart, H.K. Mao, R.J. Hemley, In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. J. Chem. Phys. 126(17), 174505 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. N. Mishchuk, V. Goncharuk, On the nature of physical properties of water. J. Water Chem. Technol. 39(3), 125–131 (2017)

    Article  Google Scholar 

  24. Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  CAS  Google Scholar 

  25. Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. G.N. Ruiz, L.E. Bove, H.R. Corti, T. Loerting, Pressure-induced transformations in LiCl–H2O at 77 K. Phys. Chem. Chem. Phys. 16(34), 18553–18562 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. S. Klotz, L.E. Bove, T. Strässle, T.C. Hansen, A.M. Saitta, The preparation and structure of salty ice VII under pressure. Nat. Mater. 8(5), 405–409 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. L.E. Bove, R. Gaal, Z. Raza, A.A. Ludl, S. Klotz, A.M. Saitta, A.F. Goncharov, P. Gillet, Effect of salt on the H-bond symmetrization in ice. Proc Natl Acad Sci U S A 112(27), 8216–8220 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Bronstein, P. Depondt, L.E. Bove, R. Gaal, A.M. Saitta, F. Finocchi, Quantum versus classical protons in pure and salty ice under pressure. Phy. Rev. B 93(2), 024104 (2016)

    Article  CAS  Google Scholar 

  30. Y. Xu, C. Wang, K.C. Tam, L. Li, Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water. Langmuir 20(3), 646–652 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-Temperature NaI/H2O Compression Icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)

    Article  CAS  Google Scholar 

  35. A.F. Goncharov, V.V. Struzhkin, M.S. Somayazulu, R.J. Hemley, H.K. Mao, Compression of Ice to 210 Gigapascals: Infrared Evidence for a Symmetric Hydrogen-Bonded Phase. Science 273(5272), 218–220 (1996)

    Article  CAS  PubMed  Google Scholar 

  36. A.F. Goncharov, V.V. Struzhkin, H.-K. Mao, R.J. Hemley, Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys. Rev. Lett. 83(10), 1998 (1999)

    Article  CAS  Google Scholar 

  37. J. Niehaus, W. Cantrell, Contact Freezing of Water by Salts. J. Phys. Chem. Lett. 6(17), 3490–3495 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. N.R. Gokhale, J.D. Spengler, Freezing of freely suspended, supercooled water drops by contact nucleation. J. Appl. Meteorol. 11(1), 157–160 (1972)

    Article  CAS  Google Scholar 

  39. W.A. Cooper, A possible mechanism for contact nucleation. J. Atmos. Sci. 31(7), 1832–1837 (1974)

    Article  Google Scholar 

  40. N. Fukuta, A study of the mechanism of contact ice nucleation. J. Atmos. Sci. 32(8), 1597–1603 (1975)

    Article  CAS  Google Scholar 

  41. C. Gurganus, A.B. Kostinski, R.A. Shaw, Fast imaging of freezing drops: no preference for nucleation at the contact line. The J. Phys. Chem. Letters 2(12), 1449–1454 (2011)

    Article  CAS  Google Scholar 

  42. R.A. Shaw, A.J. Durant, Y. Mi, Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem. B 109(20), 9865–9868 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. R.G. Knollenberg, A laboratory study of the local cooling resulting from the dissolution of soluble ice nuclei having endothermic heats of solution. J. Atmos. Sci. 26(1), 115–124 (1969)

    Article  CAS  Google Scholar 

  44. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012)

    Article  CAS  Google Scholar 

  47. M. Baumgartner, R.J. Bakker, Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—a study of polarization effects. Mineral. Petrol. 95(1–2), 1–15 (2008)

    Google Scholar 

  48. Y. Zhou, Y. Zhong, Y. Gong, X. Zhang, Z. Ma, Y. Huang, C.Q. Sun, Unprecedented thermal stability of water supersolid skin. J. Mol. Liq. 220, 865–869 (2016)

    Article  CAS  Google Scholar 

  49. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Letters 4, 3238–3244 (2013)

    Article  CAS  Google Scholar 

  50. C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys. 113, 494 pp (2016)

    Google Scholar 

  51. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Letters 4, 2565–2570 (2013)

    Article  CAS  Google Scholar 

  52. J. Chen, K. Nagashima, K.-I. Murata, G. Sazaki, Quasi-liquid layers can exist on polycrystalline ice thin films at a temperature significantly lower than on ice single crystals. Cryst. Growth Des. 19, 116–124 (2018)

    Article  CAS  Google Scholar 

  53. D.M. Murphy, T. Koop, Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. Royal Meteorol. Soc.: J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 131(608), 1539–1565 (2005)

    Article  Google Scholar 

  54. D. Sonntag, Import new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90, and psychrometer formulae. Z. Meterol. 70, 340 (1990)

    Google Scholar 

  55. X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci Rep 5, 13655 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  56. C.Q. Sun, Perspective: Supersolidity of Undercoordinated and Hydrating Water. Phys. Chem. Chem. Phys. 20, 30104–30119 (2018)

    Article  CAS  PubMed  Google Scholar 

  57. C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)

    Article  CAS  Google Scholar 

  58. K. Sotthewes, P. Bampoulis, H.J. Zandvliet, D. Lohse, B. Poelsema, Pressure induced melting of confined ice. ACS Nano 11(12), 12723–12731 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12(3), 267 (2017)

    Article  CAS  PubMed  Google Scholar 

  61. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  PubMed  CAS  Google Scholar 

  62. M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. PCCP 14(11), 3852–3858 (2012)

    Article  CAS  PubMed  Google Scholar 

  63. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109(3), 035701 (2012)

    Article  CAS  PubMed  Google Scholar 

  65. R. Moro, R. Rabinovitch, C. Xia, V.V. Kresin, Electric dipole moments of water clusters from a beam deflection measurement. Phys. Rev. Lett. 97(12), 123401 (2006)

    Article  PubMed  CAS  Google Scholar 

  66. A. Späh, H. Pathak, K.H. Kim, F. Perakis, D. Mariedahl, K. Amann-Winkel, J.A. Sellberg, J.H. Lee, S. Kim, J. Park, K.H. Nam, T. Katayama, A. Nilsson, Apparent power-law behavior of water’s isothermal compressibility and correlation length upon supercooling. Phys. Chem. Chem. Phys. 21, 26–31 (2019)

    Article  Google Scholar 

  67. J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. C. Goy, M.A. Potenza, S. Dedera, M. Tomut, E. Guillerm, A. Kalinin, K.-O. Voss, A. Schottelius, N. Petridis, A. Prosvetov, Shrinking of rapidly evaporating water microdroplets reveals their extreme supercooling. Phys. Rev. Lett. 120(1), 015501 (2018)

    Article  CAS  PubMed  Google Scholar 

  69. K. Ando, M. Arakawa, A. Terasaki, Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum. Phys. Chem. Chem. Phys. 20(45), 28435–28444 (2018)

    Article  CAS  PubMed  Google Scholar 

  70. S. Park, D.E. Moilanen, M.D. Fayer, Water dynamics: the effects of ions and nanoconfinement. J. Phys. Chem. B 112(17), 5279–5290 (2008)

    Article  CAS  PubMed  Google Scholar 

  71. D.E. Moilanen, N.E. Levinger, D.B. Spry, M.D. Fayer, Confinement or the nature of the interface? Dynamics of nanoscopic water. J. Am. Chem. Soc. 129(46), 14311–14318 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M.D. Fayer, Dynamics of water interacting with interfaces, molecules, and ions. Acc. Chem. Res. 45(1), 3–14 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. A.A. Bakulin, D. Cringus, P.A. Pieniazek, J.L. Skinner, T.L. Jansen, M.S. Pshenichnikov, Dynamics of water confined in reversed micelles: multidimensional vibrational spectroscopy study. J. Phys. Chem. B 117(49), 15545–15558 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. P.A. Pieniazek, Y.-S. Lin, J. Chowdhary, B.M. Ladanyi, J. Skinner, Vibrational spectroscopy and dynamics of water confined inside reverse micelles. J. Phys. Chem. B 113(45), 15017–15028 (2009)

    Article  CAS  PubMed  Google Scholar 

  75. L. Pauling, The Nature of the Chemical Bond. 3rd ed. (Cornell University press, Ithaca, NY, 1960)

    Google Scholar 

  76. C.Q. Sun, Relaxation of the chemical bond. Springer Ser. Chem. Phys. 108, 807 pp (2014)

    Google Scholar 

  77. Q. Zeng, J. Li, H. Huang, X. Wang, M. Yang, Polarization response of clathrate hydrates capsulated with guest molecules. J. Chem. Phys. 144(20), 204308 (2016)

    Article  PubMed  CAS  Google Scholar 

  78. F. Yang, X. Wang, M. Yang, A. Krishtal, C. Van Alsenoy, P. Delarue, P. Senet, Effect of hydrogen bonds on polarizability of a water molecule in (H2O) N (N = 6, 10, 20) isomers. Phys. Chem. Chem. Phys. 12(32), 9239–9248 (2010)

    Article  CAS  PubMed  Google Scholar 

  79. X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)

    Article  CAS  Google Scholar 

  80. X. Zhang, X. Liu, Y. Zhong, Z. Zhou, Y. Huang, C.Q. Sun, Nanobubble skin supersolidity. Langmuir 32(43), 11321–11327 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)

    Article  CAS  Google Scholar 

  82. Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H–O vibrational mode of ordinary water to the HI NaI, and NaOH hydration states. J. Mol. Liq. 244, 415–421 (2017)

    Article  CAS  Google Scholar 

  83. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  CAS  Google Scholar 

  84. Y. Chen, H.I.I. Okur, C. Liang, S. Roke, Orientational ordering of water in extended hydration shells of cations is ion-specific and correlates directly with viscosity and hydration free energy. Phys. Chem. Chem. Phys. 19(36), 24678–24688 (2017)

    Article  CAS  PubMed  Google Scholar 

  85. B. Wang, W. Jiang, Y. Gao, Z. Zhang, C. Sun, F. Liu, Z. Wang, Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 7(19), 11680–11683 (2017)

    Article  CAS  Google Scholar 

  86. Y. Gong, Y. Zhou, C. Sun, Phonon spectrometrics of the hydrogen bond (O:H–O) segmental length and energy relaxation under excitation, B.o. intelligence, Editor. China (2018)

    Google Scholar 

  87. X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. Y. Peng, Y. Yang, Y. Sun, Y. Huang, C.Q. Sun, Phonon abundance-stiffness-lifetime transition from the mode of heavy water to its confinement and hydration. J. Mol. Liq. 276, 688–693 (2019)

    Article  CAS  Google Scholar 

  89. E.E. Fenn, D.B. Wong, M. Fayer, Water dynamics at neutral and ionic interfaces. Proc. Natl. Acad. Sci. 106(36), 15243–15248 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. T.H. van der Loop, N. Ottosson, T. Vad, W.F. Sager, H.J. Bakker, S. Woutersen, Communication: slow proton-charge diffusion in nanoconfined water. J. Chem. Phys. 146(13), 131101 (2017)

    Article  PubMed  CAS  Google Scholar 

  91. E.J. Hart, J. Boag, Absorption spectrum of the hydrated electron in water and in aqueous solutions. J. Am. Chem. Soc. 84(21), 4090–4095 (1962)

    Article  CAS  Google Scholar 

  92. W. Weyl, Ann. Phys. 197, 601 (1863)

    Google Scholar 

  93. L. Kevan, Solvated electron structure in glassy matrixes. Acc. Chem. Res. 14(5), 138–145 (1981)

    Article  CAS  Google Scholar 

  94. M. Boero, M. Parrinello, K. Terakura, T. Ikeshoji, C.C. Liew, First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water. Phys. Rev. Lett. 90(22), 226403 (2003)

    Article  PubMed  CAS  Google Scholar 

  95. K.R. Siefermann, B. Abel, The hydrated electron: a seemingly familiar chemical and biological transient. Angew. Chem. Int. Ed. 50(23), 5264–5272 (2011)

    Article  CAS  Google Scholar 

  96. A. Bragg, J. Verlet, A. Kammrath, O. Cheshnovsky, D. Neumark, Hydrated electron dynamics: from clusters to bulk. Science 306(5696), 669–671 (2004)

    Article  CAS  PubMed  Google Scholar 

  97. J. Verlet, A. Bragg, A. Kammrath, O. Cheshnovsky, D. Neumark, Observation of large water-cluster anions with surface-bound excess electrons. Science 307(5706), 93–96 (2005)

    Article  CAS  PubMed  Google Scholar 

  98. J.M. Herbert, M.P. Coons, The hydrated electron. Annu. Rev. Phys. Chem. 68, 447–472 (2017)

    Article  CAS  PubMed  Google Scholar 

  99. D. Sagar, C.D. Bain, J.R. Verlet, Hydrated electrons at the water/air interface. J. Am. Chem. Soc. 132(20), 6917–6919 (2010)

    Article  CAS  PubMed  Google Scholar 

  100. J. Kim, I. Becker, O. Cheshnovsky, M.A. Johnson, Photoelectron spectroscopy of the ‘missing’ hydrated electron clusters (H2O) n, n = 3, 5, 8 and 9: isomers and continuity with the dominant clusters n = 6, 7 and ≥11. Chem. Phys. Lett. 297(1–2), 90–96 (1998)

    Article  CAS  Google Scholar 

  101. J.V. Coe, S.M. Williams, K.H. Bowen, Photoelectron spectra of hydrated electron clusters vs. cluster size: connecting to bulk. Int. Rev. Phys. Chem. 27(1), 27–51 (2008)

    Article  CAS  Google Scholar 

  102. A. Kammrath, G. Griffin, D. Neumark, J.R.R. Verlet, Photoelectron spectroscopy of large (water)[sub n][sup −] (n = 50–200) clusters at 4.7 eV. J. Chem. Phys. 125(7), 076101 (2006)

    Google Scholar 

  103. J. Ceponkus, P. Uvdal, B. Nelander, Intermolecular vibrations of different isotopologs of the water dimer: experiments and density functional theory calculations. J. Chem. Phys. 129(19), 194306 (2008)

    Article  CAS  PubMed  Google Scholar 

  104. J. Ceponkus, P. Uvdal, B. Nelander, On the structure of the matrix isolated water trimer. J. Chem. Phys. 134(6), 064309 (2011)

    Article  CAS  PubMed  Google Scholar 

  105. J. Ceponkus, P. Uvdal, B. Nelander, Water tetramer, pentamer, and hexamer in inert matrices. J. Phys. Chem. A 116(20), 4842–4850 (2012)

    Article  CAS  PubMed  Google Scholar 

  106. V. Buch, S. Bauerecker, J.P. Devlin, U. Buck, J.K. Kazimirski, Solid water clusters in the size range of tens-thousands of H2O: a combined computational/spectroscopic outlook. Int. Rev. Phys. Chem. 23(3), 375–433 (2004)

    Article  CAS  Google Scholar 

  107. U. Bovensiepen, C. Gahl, J. Stahler, M. Bockstedte, M. Meyer, F. Baletto, S. Scandolo, X.-Y. Zhu, A. Rubio, M. Wolf, A dynamic landscape from femtoseconds to minutes for excess electrons at ice–metal interfaces. J. Phys. Chem. C 113(3), 979–988 (2008)

    Article  CAS  Google Scholar 

  108. K.R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, B. Abel, Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2(4), 274 (2010)

    Article  CAS  PubMed  Google Scholar 

  109. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  PubMed  CAS  Google Scholar 

  110. M.M.A. Science, Sodium in Water Explosion—Chemical Reaction (2016)

    Google Scholar 

  111. P.E. Mason, F. Uhlig, V. Vaněk, T. Buttersack, S. Bauerecker, P. Jungwirth, Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 7, 250 (2015)

    Article  CAS  PubMed  Google Scholar 

  112. M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D. Taroata, G. Schmid, A review on lithium combustion. Appl. Energy 162, 948–965 (2016)

    Article  CAS  Google Scholar 

  113. P.E. Mason, Pouring Molten Salt into Water—Explosion! (2017)

    Google Scholar 

  114. J.D. Bernardin, I. Mudawar, A cavity activation and bubble growth model of the Leidenfrost point. J. Heat Transfer 124(5), 864–874 (2002)

    Article  CAS  Google Scholar 

  115. D. Duft, T. Achtzehn, R. Müller, B.A. Huber, T. Leisner, Coulomb fission: Rayleigh jets from levitated microdroplets. Nature 421(6919), 128 (2003)

    Article  CAS  PubMed  Google Scholar 

  116. L. Rayleigh, XX. On the equilibrium of liquid conducting masses charged with electricity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 14(87), 184–186 (1882)

    Google Scholar 

  117. C. Zhang, F. Jiao, L. Hongzhen, Crystal engineering for creating low sensitivity and highly energetic materials. Cryst. Growth Des. 18, 5713–5726 (2018)

    Article  CAS  Google Scholar 

  118. L. Zhang, C. Yao, S.-L. Jiang, Y. Yu, C.Q. Sun, J. Chen, Stabilization of the dual-aromatic pentazole cyclo-N5 anion by acidic entrapment. J Phys Chem Lett 10, 2378–2385 (2019)

    Google Scholar 

  119. C. Jiang, L. Zhang, C. Sun, C. Zhang, C. Yang, J. Chen, B. Hu, Response to comment on “Synthesis and characterization of the pentazolate anion cyclo-N5—in (N5)6(H3O)3(NH4)4Cl”. Science 359, 8953–8955 (2018)

    Article  CAS  Google Scholar 

  120. C. Zhang, C. Sun, B. Hu, C. Yu, M. Lu, Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 355(6323), 374 (2017)

    Article  CAS  PubMed  Google Scholar 

  121. C. Zhang, C. Yang, B. Hu, C. Yu, Z. Zheng, and C. Sun, A Symmetric Co(N5)2(H2O)4.4 H2O High-Nitrogen Compound Formed by Cobalt(II) Cation Trapping of a Cyclo-N5 Anion. Angew Chem. Int. Ed. 56(16), 4512 (2017)

    Google Scholar 

  122. Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang, M. Lu, A series of energetic metal pentazolate hydrates. Nature 549(7670), 78 (2017)

    Article  CAS  PubMed  Google Scholar 

  123. W. Zhang, K. Wang, J. Li, Z. Lin, S. Song, S. Huang, Y. Liu, F. Nie, Q. Zhang, Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages. Angew. Chem. Int. Ed. 57(10), 2592 (2018)

    Article  CAS  Google Scholar 

  124. C. Sun, C. Zhang, C. Jiang, C. Yang, Y. Du, Y. Zhao, B. Hu, Z. Zheng, K.O. Christe, Synthesis of AgN5 and its extended 3D energetic framework. Nat. Commun. 9(1), 1269 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Y. Xu, Q. Lin, P. Wang, M. Lu, Stabilization of the pentazolate anion in three anhydrous and metal-free energetic salts. Chem. Asian J 13(8), 924 (2018)

    Article  CAS  PubMed  Google Scholar 

  126. P. Wang, Y. Xu, Q. Lin, M. Lu, Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N5 and its derivatives. Chem. Soc. Rev. (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C.Q. (2019). Multifield Coupling. In: Solvation Dynamics. Springer Series in Chemical Physics, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-13-8441-7_8

Download citation

Publish with us

Policies and ethics