Hofmeister Salt Solutions: Screened Polarization

  • Chang Q SunEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 121)


Water dissolves salt into ions and then hydrates the ions in an aqueous solution. Hydration of ions deforms the hydrogen bonding network and triggers the solution with what the pure water never shows such as conductivity, molecular diffusivity, thermal stability, surface stress, solubility, and viscosity, having enormous impact to many branches in biochemistry, chemistry, physics, and energy and environmental industry sectors. However, regulations for the solute-solute-solvent interactions are still open for exploration. From the perspective of the screened ionic polarization and O:H–O bond relaxation, this chapter is focused on understanding the hydration dynamics of Hofmeister ions in the typical YI, NaX, ZX2, and NaT salt solutions (Y = Li, Na, K, Rb, Cs; X = F, Cl, Br, I; Z = Mg, Ca, Ba, Sr; T = ClO4, NO3, HSO4, SCN). Phonon spectrometric analysis turned out the f(C) fraction of bond transition from the mode of deionized water to the hydrating. The linear f(C) ∝ C form features the invariant hydration volume of small cations that are fully-screened by their hydration H2O dipoles. The nonlinear f(C) ∝ 1 − exp(−C/C0) form describes that the number insufficiency of the ordered hydrating H2O diploes partially screens the anions. Molecular anions show stronger yet shorter electric field of dipoles. The screened ionic polarization, inter-solute interaction, and O:H–O bond transition unify the solution conductivity, surface stress, viscosity, and critical energies for phase transition.


  1. 1.
    F. Hofmeister, Zur Lehre von der Wirkung der Salze. Archi. Exp. Pathol. Pharmakol. 25(1), 1–30 (1888)CrossRefGoogle Scholar
  2. 2.
    Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015) CrossRefGoogle Scholar
  3. 3.
    P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112(4), 2286–2322 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, A. Kumar, S. Depauw, R. Nhili, M.H. David-Cordonnier, M.P. Lee, M.A. Ismail, A.A. Farahat, M. Say, S. Chackal-Catoen, A. Batista-Parra, S. Neidle, D.W. Boykin, W.D. Wilson, Water-mediated binding of agents that target the DNA minor groove. J. Am. Chem. Soc. 133(26), 10171–10183 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    E.K. Wilson, Hofmeister still mystifies. C&EN Arch. 90(29), 42–43 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Wang, W. Jiang, Y. Gao, Z. Zhang, C. Sun, F. Liu, Z. Wang, Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 7(19), 11680–11683 (2017)CrossRefGoogle Scholar
  8. 8.
    K.D. Collins, Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions. Biophys. Chem. 167, 43–59 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    L. Li, J.H. Ryu, S. Thayumanavan, Effect of Hofmeister ions on the size and encapsulation stability of polymer nanogels. Langmuir 29(1), 50–55 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    R. Đuričković, P. Claverie, M. Bourson, J.-M. Marchetti, M.D.Fontana Chassot, Water-ice phase transition probed by Raman spectroscopy. J. Raman Spectrosc. 42(6), 1408–1412 (2011)CrossRefGoogle Scholar
  11. 11.
    Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Li, C. Zhang, J. Luo, Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 27(15), 9413–9417 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    J. Li, C. Zhang, J. Luo, Superlubricity achieved with mixtures of polyhydroxy alcohols and acids. Langmuir 29(17), 5239–5245 (2013)PubMedCrossRefGoogle Scholar
  14. 14.
    B.C. Donose, I.U. Vakarelski, K. Higashitani, Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir 21(5), 1834–1839 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)PubMedCrossRefGoogle Scholar
  16. 16.
    L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380–383 (2017)PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Zhang, P.S. Cremer, Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 61, 63–83 (2010)PubMedCrossRefGoogle Scholar
  18. 18.
    C.Q. Sun, Y. Sun, in The Attribute of Water: Single Notion, Multiple Myths. Springer Series Chemical Physics, vol. 113 (Springer, Heidelberg, 2016), 494pGoogle Scholar
  19. 19.
    Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRefGoogle Scholar
  20. 20.
    X.P. Li, K. Huang, J.Y. Lin, Y.Z. Xu, H.Z. Liu, Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution. Prog. Chem. 26(8), 1285–1291 (2014)Google Scholar
  21. 21.
    F. Hofmeister, Concerning regularities in the protein-precipitating effects of salts and the relationship of these effects to the physiological behaviour of salts. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888)CrossRefGoogle Scholar
  22. 22.
    P. Jungwirth, P.S. Cremer, Beyond Hofmeister. Nat. Chem. 6(4), 261–263 (2014)CrossRefGoogle Scholar
  23. 23.
    W.M. Cox, J.H. Wolfenden, The viscosity of strong electrolytes measured by a differential method. Proc. R. Soc. Lond. A 145(855), 475–488 (1934)CrossRefGoogle Scholar
  24. 24.
    P. Ball, J.E. Hallsworth, Water structure and chaotropicity: their uses, abuses and biological implications. PCCP 17(13), 8297–8305 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    K.D. Collins, M.W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18(04), 323–422 (1985)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    K.D. Collins, Charge density-dependent strength of hydration and biological structure. Biophys. J. 72(1), 65–76 (1997)PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    T.T. Duignan, D.F. Parsons, B.W. Ninham, Collins’s rule, Hofmeister effects and ionic dispersion interactions. Chem. Phys. Lett. 608, 55–59 (2014)CrossRefGoogle Scholar
  28. 28.
    X. Liu, H. Li, R. Li, D. Xie, J. Ni, L. Wu, Strong non-classical induction forces in ion-surface interactions: general origin of Hofmeister effects. Sci. Rep. 4, 5047 (2014). http://www.naturecom/srep/2013/131021/srep03005/metrics
  29. 29.
    W.J. Xie, Y.Q. Gao, A simple theory for the Hofmeister series. J. Phys. Chem. Lett. 4, 4247–4252 (2013)PubMedCrossRefGoogle Scholar
  30. 30.
    H. Zhao, D. Huang, Hydrogen bonding penalty upon ligand binding. PLoS ONE 6(6), e19923 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    W.B. O’Dell, D.C. Baker, S.E. McLain, Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution. PLoS ONE 7(10), e45311 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    M. Cacace, E. Landau, J. Ramsden, The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys. 30(3), 241–277 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    I.S. Perelygin, G.P. Mikhailov, S.V. Tuchkov, Vibrational and orientational relaxation of polyatomic anions and ion-molecular hydrogen bond in aqueous solutions. J. Mol. Struct. 381(1–3), 189–192 (1996)CrossRefGoogle Scholar
  34. 34.
    F. Bruni, S. Imberti, R. Mancinelli, M.A. Ricci, Aqueous solutions of divalent chlorides: ions hydration shell and water structure. J. Chem. Phys. 136(6), 137–148 (2012)CrossRefGoogle Scholar
  35. 35.
    M. Andreev, A. Chremos, J. de Pablo, J.F. Douglas, Coarse-grained model of the dynamics of electrolyte solutions. J. Phys. Chem. B 121(34), 8195–8202 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    M. Andreev, J.J. de Pablo, A. Chremos, J.F. Douglas, Influence of ion solvation on the properties of electrolyte solutions. J. Phys. Chem. B 122(14), 4029–4034 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    P.H.K.D. Jong, G.W. Neilson, M.C. Bellissent-Funel, Hydration of Ni2+ and Cl in a concentrated nickel chloride solution at 100 °C and 300 °C. J. Chem. Phys. 105(12), 5155–5159 (1996)CrossRefGoogle Scholar
  38. 38.
    C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)CrossRefGoogle Scholar
  39. 39.
    C.Q. Sun, Perspective: supersolidity of undercoordinated and hydrating water. Phys. Chem. Chem. Phys. 20, 30104–30119 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    B. Hess, N.F.A. van der Vegt, Cation specific binding with protein surface charges. Proc. Natl. Acad. Sci. 106(32), 13296–13300 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    J.S. Uejio, C.P. Schwartz, A.M. Duffin, W.S. Drisdell, R.C. Cohen, R.J. Saykally, Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets. Proc. Natl. Acad. Sci. 105(19), 6809–6812 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    L. Vrbka, J. Vondrášek, B. Jagoda-Cwiklik, R. Vácha, P. Jungwirth, Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces. Proc. Natl. Acad. Sci. 103(42), 15440–15444 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    J. Paterová, K.B. Rembert, J. Heyda, Y. Kurra, H.I. Okur, W.R. Liu, C. Hilty, P.S. Cremer, P. Jungwirth, Reversal of the hofmeister series: specific ion effects on peptides. J. Phys. Chem. B 117(27), 8150–8158 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    J. Heyda, T. Hrobárik, P. Jungwirth, Ion-specific interactions between halides and basic amino acids in water†. J. Phys. Chem. A 113(10), 1969–1975 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)CrossRefGoogle Scholar
  46. 46.
    S. Park, M.D. Fayer, Hydrogen bond dynamics in aqueous NaBr solutions. Proc. Natl. Acad. Sci. U.S.A. 104(43), 16731–16738 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012)CrossRefGoogle Scholar
  48. 48.
    F. Aliotta, M. Pochylski, R. Ponterio, F. Saija, G. Salvato, C. Vasi, Structure of bulk water from Raman measurements of supercooled pure liquid and LiCl solutions. Phys. Rev. B 86(13), 134301 (2012)CrossRefGoogle Scholar
  49. 49.
    S. Park, M.B. Ji, K.J. Gaffney, Ligand exchange dynamics in aqueous solution studied with 2DIR spectroscopy. J. Phys. Chem. B 114(19), 6693–6702 (2010)CrossRefGoogle Scholar
  50. 50.
    S. Park, M. Odelius, K.J. Gaffney, Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J. Phys. Chem. B 113(22), 7825–7835 (2009)CrossRefGoogle Scholar
  51. 51.
    K.J. Gaffney, M. Ji, M. Odelius, S. Park, Z. Sun, H-bond switching and ligand exchange dynamics in aqueous ionic solution. Chem. Phys. Lett. 504(1–3), 1–6 (2011)CrossRefGoogle Scholar
  52. 52.
    Y. Zhou, Y. Zhong, X. Liu, Y. Huang, X. Zhang, C.Q. Sun, NaX solvation bonding dynamics: hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J. Mol. Liq. 248, 432–438 (2017)CrossRefGoogle Scholar
  53. 53.
    Y. Chen, H.I.I. Okur, C. Liang, S. Roke, Orientational ordering of water in extended hydration shells of cations is ion-specific and correlates directly with viscosity and hydration free energy. Phys. Chem. Chem. Phys. 19(36), 24678–24688 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRefGoogle Scholar
  55. 55.
    X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)CrossRefGoogle Scholar
  56. 56.
    X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
  57. 57.
    X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRefGoogle Scholar
  58. 58.
    C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)CrossRefGoogle Scholar
  59. 59.
    L. Wang, Y. Guo, P. Li, Y. Song, Anion-specific effects on the assembly of collagen layers mediated by magnesium ion on mica surface. J. Phys. Chem. B 118(2), 511–518 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Y. Gong, Y. Xu, Y. Zhou, C. Li, X. Liu, L. Niu, Y. Huang, X. Zhang, C.Q. Sun, Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). J. Raman Spectrosc. 48(3), 393–398 (2017)CrossRefGoogle Scholar
  61. 61.
    C. Yan, Z. Xue, W. Zhao, J. Wang, T. Mu, Surprising Hofmeister effects on the bending vibration of water. ChemPhysChem 17(20), 3309–3314 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Z. Yin, L. Inhester, S. Thekku Veedu, W. Quevedo, A. Pietzsch, P. Wernet, G. Groenhof, A. Foehlisch, H. Grubmüller, S.A. Techert, Cationic and anionic impact on the electronic structure of liquid water. J. Phys. Chem. Lett. 8(16), 3759–3764 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)CrossRefGoogle Scholar
  64. 64.
    J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119(23), 7015–7029 (2015)CrossRefGoogle Scholar
  65. 65.
    G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51(10), 2950–2964 (1929)CrossRefGoogle Scholar
  66. 66.
    K. Wynne, The mayonnaise effect. J. Phys. Chem. Lett. 8(24), 6189–6192 (2017)CrossRefGoogle Scholar
  67. 67.
    S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    T. Brinzer, E.J. Berquist, Z. Ren (任哲), S. Dutta, C.A. Johnson, C.S. Krisher, D.S. Lambrecht, S. Garrett-Roe, Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: carbon capture from carbon dioxide’s point of view. J. Chem. Phys. 142(21), 212425 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Z. Ren, A.S. Ivanova, D. Couchot-Vore, S. Garrett-Roe, Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity. J. Phys. Chem. Lett. 5(9), 1541–1546 (2014)CrossRefGoogle Scholar
  70. 70.
    Q. Wei, D. Zhou, H. Bian, Negligible cation effect on the vibrational relaxation dynamics of water molecules in NaClO4 and LiClO4 aqueous electrolyte solutions. RSC Adv. 7(82), 52111–52117 (2017)CrossRefGoogle Scholar
  71. 71.
    A.W. Omta, M.F. Kropman, S. Woutersen, H.J. Bakker, Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301(5631), 347–349 (2003)CrossRefGoogle Scholar
  72. 72.
    R. Mancinelli, A. Botti, F. Bruni, M.A. Ricci, A.K. Soper, Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111, 13570–13577 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34(3), 300–311 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)CrossRefGoogle Scholar
  75. 75.
    Z.S. Nickolov, J. Miller, Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band. J. Colloid Interface Sci. 287(2), 572–580 (2005)CrossRefGoogle Scholar
  76. 76.
    X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiang, C.Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Phys. Chem. Chem. Phys. 16(42), 22995–23002 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    R. Zangi, B. Berne, Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J. Phys. Chem. B 110(45), 22736–22741 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Y. Levin, Polarizable ions at interfaces. Phys. Rev. Lett. 102(14), 147803 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    H.I. Okur, J. Hladílková, K.B. Rembert, Y. Cho, J. Heyda, J. Dzubiella, P.S. Cremer, P. Jungwirth, Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. J. Phys. Chem. B 121(9), 1997–2014 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, NY, 1960)Google Scholar
  82. 82.
    C.Q. Sun, Relaxation of the Chemical Bond. Springer Series Chemical Physics, vol. 108 (Springer, Heidelberg, 2014), 807pCrossRefGoogle Scholar
  83. 83.
    C.Q. Sun, Y. Sun, Y.G. Ni, X. Zhang, J.S. Pan, X.H. Wang, J. Zhou, L.T. Li, W.T. Zheng, S.S. Yu, L.K. Pan, Z. Sun, Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J. Phys. Chem. C 113(46), 20009–20019 (2009)CrossRefGoogle Scholar
  84. 84.
    X. Zhang, Y. Huang, Z. Ma, L. Niu, C.Q. Sun, From ice superlubricity to quantum friction: electronic repulsivity and phononic elasticity. Friction 3(4), 294–319 (2015)CrossRefGoogle Scholar
  85. 85.
    H. Fang, Z. Tang, X. Liu, Y. Huang, C.Q. Sun, Capabilities of anion and cation on hydrogen-bond transition from the mode of ordinary water to (Mg, Ca, Sr)(Cl, Br)2 hydration. J. Mol. Liq. 279, 485–491 (2019)CrossRefGoogle Scholar
  86. 86.
    C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)CrossRefGoogle Scholar
  87. 87.
    C.Q. Sun, Perspective: unprecedented O:⇔:O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    L.M. Levering, M.R. Sierra-Hernández, H.C. Allen, Observation of hydronium ions at the air–aqueous acid interface: vibrational spectroscopic studies of aqueous HCl, HBr, and HI. J. Phys. Chem. C 111(25), 8814–8826 (2007)CrossRefGoogle Scholar
  89. 89.
    C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)CrossRefGoogle Scholar
  90. 90.
    C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)CrossRefGoogle Scholar
  91. 91.
    J. Ostmeyer, S. Chakrapani, A.C. Pan, E. Perozo, B. Roux, Recovery from slow inactivation in K channels is controlled by water molecules. Nature 501(7465), 121–124 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)CrossRefGoogle Scholar
  93. 93.
    W.T. Zheng, C.Q. Sun, Electronic process of nitriding: mechanism and applications. Prog. Solid State Chem. 34(1), 1–20 (2006)CrossRefGoogle Scholar
  94. 94.
    Y. Tong, I.Y. Zhang, R.K. Campen, Experimentally quantifying anion polarizability at the air/water interface. Nat. Commun. 9, 1313 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    M. Nagasaka, H. Yuzawa, N. Kosugi, Interaction between water and alkali metal ions and its temperature dependence revealed by oxygen K-edge X-ray absorption spectroscopy. J. Phys. Chem. B 121(48), 10957–10964 (2017)CrossRefGoogle Scholar
  96. 96.
    Y. Zhou, Y. Zhong, Y. Gong, X. Zhang, Z. Ma, Y. Huang, C.Q. Sun, Unprecedented thermal stability of water supersolid skin. J. Mol. Liq. 220, 865–869 (2016)CrossRefGoogle Scholar
  97. 97.
    Q. Hu, H. Zhao, Understanding the effects of chlorine ion on water structure from a Raman spectroscopic investigation up to 573 K. J. Mol. Struct. 1182, 191–196 (2019)CrossRefGoogle Scholar
  98. 98.
    N. Ohtomo, K. Arakawa, Neutron diffraction study of aqueous ionic solutions. I. Aqueous solutions of lithium chloride and cesium chloride. Bull. Chem. Soc. Jpn 52, 2755–2759 (1979)CrossRefGoogle Scholar
  99. 99.
    Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)Google Scholar
  102. 102.
    M. Nagasaka, H. Yuzawa, N. Kosugi, Development and application of in situ/operando soft X-ray transmission cells to aqueous solutions and catalytic and electrochemical reactions. J. Electron Spectrosc. Relat. Phenom. 200, 293–310 (2015)CrossRefGoogle Scholar
  103. 103.
    C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)CrossRefGoogle Scholar
  104. 104.
    J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Sel. 2(27), 8517–8523 (2017)Google Scholar
  105. 105.
    X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)CrossRefGoogle Scholar
  106. 106.
    X. Zhang, X. Liu, Y. Zhong, Z. Zhou, Y. Huang, C.Q. Sun, Nanobubble skin supersolidity. Langmuir 32(43), 11321–11327 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    C.Q. Sun, C. Yao, Y. Sun, X. Liu, H. Fang, Y. Huang, (H, Li)Cl and LiOH hydration: surface tension, solution conductivity and viscosity, and exothermic dynamics. J. Mol. Liq. (2019). Scholar
  108. 108.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, Boca Raton, 1999)Google Scholar
  109. 109.
    A.K. Metya, J.K. Singh, Nucleation of aqueous salt solutions on solid surfaces. J. Phys. Chem. C 122(15), 8277–8287 (2018)CrossRefGoogle Scholar
  110. 110.
    M.A. Sánchez, T. Kling, T. Ishiyama, M.-J. van Zadel, P.J. Bisson, M. Mezger, M.N. Jochum, J.D. Cyran, W.J. Smit, H.J. Bakker, Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc. Natl. Acad. Sci. 114(2), 227–232 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci. Rep. 5, 13655 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)CrossRefGoogle Scholar
  113. 113.
    L. Wong, R. Shi, D. Auchettl, D.R. McNaughton, E.G.Robertson Appadoo, Heavy snow: IR spectroscopy of isotope mixed crystalline water ice. Phys. Chem. Chem. Phys. 18(6), 4978–4993 (2016)CrossRefGoogle Scholar
  114. 114.
    C. Medcraft, D. McNaughton, C.D. Thompson, D. Appadoo, S. Bauerecker, E.G. Robertson, Size and temperature dependence in the far-ir spectra of water ice particles. Astrophys. J. 758(1), 17 (2012)CrossRefGoogle Scholar
  115. 115.
    E. Mamontov, D.R. Cole, S. Dai, M.D. Pawel, C. Liang, T. Jenkins, G. Gasparovic, E. Kintzel, Dynamics of water in LiCl and CaCl2 aqueous solutions confined in silica matrices: a backscattering neutron spectroscopy study. Chem. Phys. 352(1), 117–124 (2008)CrossRefGoogle Scholar
  116. 116.
    Q. Wang, L. Zhao, C. Li, Z. Cao, The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions. Sci. Rep. 6, 26831 (2016). http://www.naturecom/srep/2013/131021/srep03005/metrics
  117. 117.
    C.A. Angell, E.J. Sare, J. Donnella, D.R. Macfarlane, Homogeneous nucleation and glass-transition temperatures in solutions of Li salts in D2O and H2O—doubly unstable glass regions. J. Phys. Chem. 85(11), 1461–1464 (1981)CrossRefGoogle Scholar
  118. 118.
    A. Kumar, Homogeneous nucleation temperatures in aqueous mixed salt solutions. J. Phys. Chem. B 111(37), 10985–10991 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    B. Zobrist, C. Marcolli, T. Peter, T. Koop, Heterogeneous ice nucleation in aqueous solutions: the role of water activity. J. Phys. Chem. A 112(17), 3965–3975 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    K. Miyata, H. Kanno, K. Tomizawa, Y. Yoshimura, Supercooling of aqueous solutions of alkali chlorides and acetates. Bull. Chem. Soc. Jpn. 74(9), 1629–1633 (2001)CrossRefGoogle Scholar
  121. 121.
    K. Miyata, H. Kanno, Supercooling behavior of aqueous solutions of alcohols and saccharides. J. Mol. Liq. 119(1–3), 189–193 (2005)CrossRefGoogle Scholar
  122. 122.
    B. Zobrist, U. Weers, T. Koop, Ice nucleation in aqueous solutions of poly[ethylene glycol] with different molar mass. J. Chem. Phys. 118(22), 10254–10261 (2003)CrossRefGoogle Scholar
  123. 123.
    M. Oguni, C.A. Angell, Heat capacities of H2O + H2O2, and H2O + N2H4, binary solutions: isolation of a singular component for Cp of supercooled water. J. Chem. Phys. 73(4), 1948 (1980)CrossRefGoogle Scholar
  124. 124.
    A. Bogdan, T. Loerting, Impact of substrate, aging, and size on the two freezing events of (NH4)2SO4/H2O droplets. J. Phys. Chem. C 115(21), 10682–10693 (2011)CrossRefGoogle Scholar
  125. 125.
    A. Bogdan, M.J. Molina, H. Tenhu, E. Mayer, T. Loerting, Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nat. Chem. 2(3), 197–201 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    H.Y.A. Chang, T. Koop, L.T. Molina, M.J. Molina, Phase transitions in emulsified HNO3/H2O and HNO3/H2SO4/H2O solutions. J. Phys. Chem. A 103(15), 2673–2679 (1999)CrossRefGoogle Scholar
  127. 127.
    K. Murata, H. Tanaka, Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture. Nat. Mater. 11(5), 436–443 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    J.M. Hey, D.R. MacFarlane, Crystallization of ice in aqueous solutions of glycerol and dimethyl sulfoxide. 1. A comparison of mechanisms. Cryobiology 33(2), 205–216 (1996)PubMedCrossRefGoogle Scholar
  129. 129.
    K.D. Beyer, A.R. Hansen, N. Raddatz, Experimental determination of the H2SO4/HNO3/H2O phase diagram in regions of stratospheric importance. J. Phys. Chem. A 108(5), 770–780 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Yangtze Normal UniversityChongqingChina

Personalised recommendations