Skip to main content

Lewis Basic and H2O2 Solutions: O:⇔:O Compression

  • Chapter
  • First Online:
  • 370 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 121))

Abstract

The OH and the H2O2 possess each two excessive pairs of electron lone pairs “:” that form an O:⇔:O super−HB upon solvation. The O:⇔:O compression shortens the O:H nonbond and stiffens its phonon but relaxes the H–O bond oppositely. The H–O bond elongation emits energy to heat up the solution. Bond-order-deficiency shortens the solute H–O bond and stiffens its phonon to 3550 cm−1 for H2O2 and 3610 cm−1 for OH. However, the O:⇔:O compression annihilates the weak cationic polarization. The H2O2 is less than the OH capable of transiting the solvent H–O bonds and surface stress. The linear fraction coefficient f(C) suggests that the OH be less sensitive to other solutes. The resultant of solvent exothermic H–O elongation by O:⇔:O compression and the solute endothermic H–O contraction by bond order deficiency heats up the solutions. Observations evidence not only the significance of the inter-lone-pair interaction but also the universality of the bond order-length-strength (BOLS) correlation to aqueous solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)

    Article  Google Scholar 

  2. Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)

    Article  CAS  Google Scholar 

  3. H.S. Marinho, C. Real, L. Cyrne, H. Soares, F. Antunes, Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535–562 (2014)

    Article  CAS  Google Scholar 

  4. H. Satooka, M. Hara-Chikuma, Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol. Cell. Biol. 36(7), 1206–1218 (2016)

    Article  CAS  Google Scholar 

  5. A.H. Gemeay, I.A. Mansour, R.G. El-Sharkawy, A.B. Zaki, Catalytic effect of supported metal ion complexes on the induced oxidative degradation of pyrocatechol violet by hydrogen peroxide. J. Colloid Interface Sci. 263(1), 228–236 (2003)

    Article  CAS  Google Scholar 

  6. G. Strukul, Catalytic Oxidations with Hydrogen Peroxide as Oxidant, Vol. 9. (Springer Science & Business Media, 2013)

    Google Scholar 

  7. J.-G. Kim, S.-J. Park, J.S.S. Damsté, S. Schouten, W.I.C. Rijpstra, M.-Y. Jung, S.-J. Kim, J.-H. Gwak, H. Hong, O.-J. Si, Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc. Natl. Acad. Sci. 113(28), 7888–7893 (2016)

    Article  CAS  Google Scholar 

  8. I.J. Amanna, H.P. Raue, M.K. Slifka, Development of a new hydrogen peroxide-based vaccine platform. Nat. Med. 18(6), 974–979 (2012)

    Article  CAS  Google Scholar 

  9. A. Noorbakhsh, M. Khakpoor, M. Rafieniya, E. Sharifi, M. Mehrasa, Highly sensitive electrochemical hydrogen peroxide sensor based on iron oxide-reduced graphene oxide-chitosan modified with DNA-celestine blue. Electroanalysis 29(4), (2017)

    Article  CAS  Google Scholar 

  10. K. Bodvard, K. Peeters, F. Roger, N. Romanov, A. Igbaria, N. Welkenhuysen, G. Palais, W. Reiter, M.B. Toledano, M. Kall, M. Molin, Light-sensing via hydrogen peroxide and a peroxiredoxin. Nat. Commun. 8, 14791 (2017)

    Article  CAS  Google Scholar 

  11. W. Fan, N. Lu, P. Huang, Y. Liu, Z. Yang, S. Wang, G. Yu, Y. Liu, J. Hu, Q. He, Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew. Chem. Int. Ed. 56(5), 1229–1233 (2017)

    Article  CAS  Google Scholar 

  12. G. Vilema-Enriquez, A. Arroyo, M. Grijalva, R.I. Amador-Zafra, J. Camacho, Molecular and cellular effects of hydrogen peroxide on human lung cancer cells: potential therapeutic implications. Oxidative Med. Cell. Longevity 2016, 1908164 (2016)

    Article  Google Scholar 

  13. S. Arrhenius, Development of the theory of electrolytic Dissociation. Nobel Lecture, (1903)

    Google Scholar 

  14. J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)

    Article  Google Scholar 

  15. T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc.Trans. 127, 2883–2887 (1925)

    Article  CAS  Google Scholar 

  16. G.N. Lewis, Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938)

    Article  Google Scholar 

  17. Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)

    Article  CAS  Google Scholar 

  18. Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)

    Article  CAS  Google Scholar 

  19. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)

    Article  CAS  Google Scholar 

  20. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  CAS  Google Scholar 

  21. H. Chen, W. Gan, B.-h. Wu, D. Wu, Y. Guo, H.-f. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phys. Chem. B 109(16), 8053–8063 (2005)

    Article  CAS  Google Scholar 

  22. M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)

    Article  CAS  Google Scholar 

  23. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  Google Scholar 

  24. L. Liu, J. Hunger, H.J. Bakker, Energy relaxation dynamics of the hydration complex of hydroxide. J. Phys. Chem. A 115(51), 14593–14598 (2011)

    Article  CAS  Google Scholar 

  25. J. Hunger, L. Liu, K.-J. Tielrooij, M. Bonn, H. Bakker, Vibrational and orientational dynamics of water in aqueous hydroxide solutions. J. Chem. Phys. 135(12), 124517 (2011)

    Article  Google Scholar 

  26. A. Mandal, K. Ramasesha, L. De Marco, A. Tokmakoff, Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy. J. Chem. Phys. 140(20), 204508 (2014)

    Article  Google Scholar 

  27. Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)

    Article  CAS  Google Scholar 

  28. W.H. Robertson, E.G. Diken, E.A. Price, J.-W. Shin, M.A. Johnson, Spectroscopic determination of the OH− solvation shell in the OH−  ·(H2O) n clusters. Science 299(5611), 1367–1372 (2003)

    Article  CAS  Google Scholar 

  29. R.-J. Lin, Q.C. Nguyen, Y.-S. Ong, K. Takahashi, J.-L. Kuo, Temperature dependent structural variations of OH–(H 2 O) n, n = 4–7: effects on vibrational and photoelectron spectra. Phys. Chem. Chem. Phys. 17(29), 19162–19172 (2015)

    Article  CAS  Google Scholar 

  30. C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Ser. Chem. Phys. 113. (2016). Heidelberg: Springer-Verlag. 494 pp

    Google Scholar 

  31. C. Chaudhuri, Y.-S. Wang, J. Jiang, Y. Lee, H.-C. Chang, G. Niedner-Schatteburg, Infrared spectra and isomeric structures of hydroxide ion-water clusters OH-(H2O) 1-5: a comparison with H3O (H2O) 1-5. Mol. Phys. 99(14), 1161–1173 (2001)

    Article  CAS  Google Scholar 

  32. S.T. Roberts, P.B. Petersen, K. Ramasesha, A. Tokmakoff, I.S. Ufimtsev, T.J. Martinez, Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions. Proc. Natl. Acad. Sci. 106(36), 15154–15159 (2009)

    Article  CAS  Google Scholar 

  33. F. Dahms, R. Costard, E. Pines, B.P. Fingerhut, E.T. Nibbering, T. Elsaesser, The hydrated excess proton in the Zundel cation H5O2 (+): The role of ultrafast solvent fluctuations. Angew. Chem. Int. Ed. Engl. 55(36), 10600–10605 (2016)

    Article  CAS  Google Scholar 

  34. C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh, H. Knorke, K.D. Jordan, A.B. McCoy, K.R. Asmis, M.A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016)

    Article  CAS  Google Scholar 

  35. H. Sies, Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 11, 613–619 (2017)

    Article  CAS  Google Scholar 

  36. S. Fukuzumi, Y. Yamada, Hydrogen peroxide used as a solar fuel in one-compartment fuel cells. Chemelectrochem 3(12), 1978–1989 (2016)

    Article  CAS  Google Scholar 

  37. A. Asghar, A.A. Abdul Raman, W.M.A. Wan Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J. Cleaner Prod. 87, 826–838 (2015)

    Article  CAS  Google Scholar 

  38. L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 60(1), 55–64 (2015)

    Article  CAS  Google Scholar 

  39. Z.-M. Pei, Y. Murata, G. Benning, S. Thomine, B. Klusener, G.J. Allen, E. Grill, J.I. Schroeder, Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797), 731–734 (2000)

    Article  CAS  Google Scholar 

  40. S.J. Neill, R. Desikan, A. Clarke, R.D. Hurst, J.T. Hancock, Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53(372), 1237–1247 (2002)

    Article  CAS  Google Scholar 

  41. P. Han, X.H. Zhou, N. Chang, C.L. Xiao, S. Yan, H. Ren, X.Z. Yang, M.L. Zhang, Q. Wu, B. Tang, J.P. Diao, X. Zhu, C. Zhang, C.Y. Li, H. Cheng, J.W. Xiong, Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 24(9), 1091–1107 (2014)

    Article  CAS  Google Scholar 

  42. J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Sel. 2(27), 8517–8523 (2017)

    CAS  Google Scholar 

  43. X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)

    Article  Google Scholar 

  44. C.Q. Sun, Atomic Scale Purification of Electron Spectroscopic Information (US 2017 patent No. 9,625,397B2) (United States, 2017)

    Google Scholar 

  45. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  CAS  Google Scholar 

  46. Y. Crespo, A. Hassanali, Characterizing the local solvation environment of OH− in water clusters with AIMD. J. Chem. Phys. 144(7), 074304 (2016)

    Article  Google Scholar 

  47. C.Q. Sun, Relaxation of the Chemical Bond. Springer Ser. Chem. Phys. 108, (2014). Heidelberg: Springer-Verlag. 807 pp

    Google Scholar 

  48. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  CAS  Google Scholar 

  49. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)

    Article  CAS  Google Scholar 

  50. F. Li, Y. Wang, C. Sun, Z. Li, Z. Men, Spectra study hydrogen bonds dynamics of water molecules at NaOH solutions. J. Mol. Liq. 277, 58–62 (2019)

    Article  CAS  Google Scholar 

  51. Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression Icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)

    Article  CAS  Google Scholar 

  52. B. Wang, W. Jiang, Y. Gao, Z. Zhang, C. Sun, F. Liu, Z. Wang, Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 7(19), 11680–11683 (2017)

    Article  CAS  Google Scholar 

  53. X. Zhang, X. Liu, Y. Zhong, Z. Zhou, Y. Huang, C.Q. Sun, Nanobubble Skin Supersolidity. Langmuir 32(43), 11321–11327 (2016)

    Article  CAS  Google Scholar 

  54. S.A. Harich, X. Yang, D.W. Hwang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of D2O at 121.6 nm: a state-to-state dynamical picture. J. Chem. Phys. 114(18), 7830–7837 (2001)

    Article  CAS  Google Scholar 

  55. S.A. Harich, D.W.H. Hwang, X. Yang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of H2O at 121.6 nm: a state-to-state dynamical picture. J. Chem. Phys. 113(22), 10073–10090 (2000)

    Article  CAS  Google Scholar 

  56. J. Peng, J. Guo, R. Ma, X. Meng, Y. Jiang, Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature. J. Phys.: Condens. Matter 29(10), 104001 (2017)

    Google Scholar 

  57. M.R. Rahimpour, M.R. Dehnavi, F. Allahgholipour, D. Iranshahi, S.M. Jokar, Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review. Appl. Energy 99, 496–512 (2012)

    Article  CAS  Google Scholar 

  58. R.C. Ramaswamy, P.A. Ramachandran, M.P. Duduković, Coupling exothermic and endothermic reactions in adiabatic reactors. Chem. Eng. Sci. 63(6), 1654–1667 (2008)

    Article  CAS  Google Scholar 

  59. N. Shahrin, Solubility and dissolution of drug product: a review. Int. J. Pharma. Life Sci. 2(1), 33–41 (2013)

    Article  Google Scholar 

  60. J.B. Rosenholm, Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors. Adv. Colloid Interface Sci. 247, 264–304 (2017)

    Article  CAS  Google Scholar 

  61. E.L. Ratkova, D.S. Palmer, M.V. Fedorov, Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem. Rev. 115(13), 6312–6356 (2015)

    Article  CAS  Google Scholar 

  62. J. Konicek, I. Wadso, Thermochemical properties of some carboxylic acids, amines and N-substituted amides in aqueous solution. Acta Chem. Scand. 25(5), 1461–1551 (1971)

    Google Scholar 

  63. G. Graziano, Hydration thermodynamics of aliphatic alcohols. PCCP. 1(15), 3567–3576 (1999)

    Article  CAS  Google Scholar 

  64. A.M. Ricks, A.D. Brathwaite, M.A. Duncan, IR spectroscopy of gas phase V(CO2)n + clusters: solvation-induced electron transfer and activation of CO2. J. Phys. Chem. A 117(45), 11490–11498 (2013)

    Article  CAS  Google Scholar 

  65. A.M. Zaichikov, M.A. Krest’yaninov, Structural and thermodynamic properties and intermolecular interactions in aqueous and acetonitrile solutions of aprotic amides. J. Struct. Chem. 54(2), 336–344 (2013)

    Article  CAS  Google Scholar 

  66. M. Wohlgemuth, M. Miyazaki, M. Weiler, M. Sakai, O. Dopfer, M. Fujii, R. Mitrić, Solvation dynamics of a single water molecule probed by infrared spectra–theory meets experiment. Angew. Chem. Int. Ed. 53(52), 14601–14604 (2014)

    Article  CAS  Google Scholar 

  67. C. Velezvega, D.J. Mckay, T. Kurtzman, V. Aravamuthan, R.A. Pearlstein, J.S. Duca, Estimation of solvation entropy and enthalpy via analysis of water oxygen-hydrogen correlations. J. Chem. Theory Comput. 11(11), 5090 (2015)

    Article  CAS  Google Scholar 

  68. K. Haldrup, W. Gawelda, R. Abela, R. Alonso-Mori, U. Bergmann, A. Bordage, M. Cammarata, S.E. Canton, A.O. Dohn, T.B. Van Driel, Observing solvation dynamics with simultaneous femtosecond X-ray emission spectroscopy and X-ray scattering. J. Phys. Chem. B 120(6), 1158–1168 (2016)

    Article  CAS  Google Scholar 

  69. L. Pauling, The Nature of the Chemical Bond. 3 ed. (Cornell University press, Ithaca, NY, 1960)

    Google Scholar 

  70. C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bondin thermodynamics: Solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)

    Article  CAS  Google Scholar 

  71. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  CAS  Google Scholar 

  72. Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  CAS  Google Scholar 

  73. T. Brinzer, E.J. Berquist, Z. Ren, 任哲, S. Dutta, C.A. Johnson, C.S. Krisher, D.S. Lambrecht, S. Garrett-Roe, Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide’s point of view. J. Chem. Phys. 142(21), 212425, (2015)

    Google Scholar 

  74. Z. Ren, A.S. Ivanova, D. Couchot-Vore, S. Garrett-Roe, Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity. J. Phys. Chem. lett. 5(9), 1541–1546 (2014)

    Article  CAS  Google Scholar 

  75. Q. Zhang, T. Wu, C. Chen, S. Mukamel, W. Zhuang, Molecular mechanism of water reorientational slowing down in concentrated ionic solutions, in Proceedings of the National Academy of Sciences: 201707453, (2017)

    Google Scholar 

  76. C.Q. Sun, Perspective:Unprecedented O:⇔: O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)

    Article  CAS  Google Scholar 

  77. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    Article  Google Scholar 

  78. Y.H. Siyan Gao, X. Zhang, C.Q. Sun, Unexpected Solute Occupancy and Anisotropic Polarizability in Lewis Basic Solutions. Communicated, (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C.Q. (2019). Lewis Basic and H2O2 Solutions: O:⇔:O Compression. In: Solvation Dynamics. Springer Series in Chemical Physics, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-13-8441-7_5

Download citation

Publish with us

Policies and ethics