Skip to main content

Lewis Acidic Solutions: H↔H Fragilization

  • Chapter
  • First Online:
Solvation Dynamics

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 121))

  • 370 Accesses

Abstract

Solvation dissolves the HX into an H+ and an X. The H+ bonds to a H2O to form a firm H3O+ and a H↔H anti − HB point breaker. The H–O bond due H3O+ is 3% shorter and the associated O:H nonbond is 60% longer than normal. The H↔H compression shortens its nearest O:H nonbond by 11% and lengthens the H–O by 4%. The X point polarizer shortens the H–O bond and stiffens its phonon but relax the O:H nonbond oppositely in the supersolid hydration shell. The X solute capability of bond transition follows the I > Br > Cl order in the form of fx(C) ∝ 1 − exp(−C/C0) towards saturation because of the involvement of the X↔X interaction that weakens the hydration-shell electric field at higher concentrations. However, the H+ neither hops or tunnels freely nor polarize its neighbors, fH(C) = 0. The H↔H has the same effect of heating on the surface stress and solution viscosity disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Arrhenius, Development of the theory of electrolytic Dissociation. Nobel Lecture, (1903)

    Google Scholar 

  2. J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)

    Article  Google Scholar 

  3. T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)

    Article  CAS  Google Scholar 

  4. G.N. Lewis, Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938)

    Article  Google Scholar 

  5. C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theory Comput. 12(10), 5117–5131 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)

    Article  CAS  Google Scholar 

  8. D. Liu, G. Ma, L.M. Levering, H.C. Allen, Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108(7), 2252–2260 (2004)

    Article  CAS  Google Scholar 

  9. Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. J. Zhang, J.-L. Kuo, T. Iitaka, First principles molecular dynamics study of filled ice hydrogen hydrate. J. Chem. Phys. 137(8), 084505 (2012)

    Article  PubMed  CAS  Google Scholar 

  12. B.L. Bhargava, Y. Yasaka, M.L. Klein, Computational studies of room temperature ionic liquid-water mixtures. Chem. Commun. 47(22), 6228–6241 (2011)

    Article  CAS  Google Scholar 

  13. S. Saita, Y. Kohno, N. Nakamura, H. Ohno, Ionic liquids showing phase separation with water prepared by mixing hydrophilic and polar amino acid ionic liquids. Chem. Commun. 49(79), 8988–8990 (2013)

    Article  CAS  Google Scholar 

  14. E.S. Stoyanov, I.V. Stoyanova, C.A. Reed, The unique nature of H+ in water. Chem. Sci. 2(3), 462–472 (2011)

    Article  CAS  Google Scholar 

  15. S. Heiles, R.J. Cooper, M.J. DiTucci, E.R. Williams, Hydration of guanidinium depends on its local environment. Chem. Sci. 6(6), 3420–3429 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. H. Chen, W. Gan, B.H. Wu, D. Wu, Y. Guo, H.F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phy. Chem. B 109(16), 8053–8063 (2005)

    Article  CAS  Google Scholar 

  18. M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  PubMed  CAS  Google Scholar 

  20. M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)

    Article  PubMed  CAS  Google Scholar 

  21. F. Dahms, R. Costard, E. Pines, B.P. Fingerhut, E.T. Nibbering, T. Elsaesser, The hydrated excess proton in the zundel cation H5 O2 (+): The role of ultrafast solvent fluctuations. Angew. Chem. Int. Ed. Engl. 55(36), 10600–10605 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)

    Article  CAS  Google Scholar 

  23. I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)

    Article  CAS  Google Scholar 

  24. P.M. Kiefer, J.T. Hynes, Theoretical aspects of tunneling proton transfer reactions in a polar environment. J. Phys. Org. Chem. 23(7), 632–646 (2010)

    Article  CAS  Google Scholar 

  25. S. Daschakraborty, P.M. Kiefer, Y. Miller, Y. Motro, D. Pines, E. Pines, J.T. Hynes, Reaction mechanism for direct proton transfer from carbonic acid to a strong base in aqueous solution I: Acid and base coordinate and charge dynamics. J. Phys. Chem. B 120(9), 2271–2280 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. N.B.-M. Kalish, E. Shandalov, V. Kharlanov, D. Pines, E. Pines, Apparent stoichiometry of water in proton hydration and proton dehydration reactions in CH3CN/H2O solutions. J. Phys. Chem. A 115(16), 4063–4075 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. D. Borgis, G. Tarjus, H. Azzouz, An adiabatic dynamical simulation study of the Zundel polarization of strongly H-bonded complexes in solution. J. Chem. Phys. 97(2), 1390–1400 (1992)

    Article  CAS  Google Scholar 

  28. R. Vuilleumier, D. Borgis, Quantum dynamics of an excess proton in water using an extended empirical valence-bond Hamiltonian. J. Phys. Chem. B 102(22), 4261–4264 (1998)

    Article  CAS  Google Scholar 

  29. R. Vuilleumier, D. Borgis, Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J. Chem. Phys. 111(9), 4251–4266 (1999)

    Article  CAS  Google Scholar 

  30. K. Ando, J.T. Hynes, Molecular mechanism of HCl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101(49), 10464–10478 (1997)

    Article  CAS  Google Scholar 

  31. K. Ando, J.T. Hynes, HF acid ionization in water: the first step. Faraday Discuss. 102, 435–441 (1995)

    Article  CAS  Google Scholar 

  32. D. Borgis, J.T. Hynes, Molecular-dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J. Chem. Phys. 94(5), 3619–3628 (1991)

    Article  CAS  Google Scholar 

  33. M.I. Bernal-Uruchurtu, R. Hernández-Lamoneda, K.C. Janda, On the unusual properties of halogen bonds: A detailed ab initio study of X2 − (H2O) 1–5 clusters (X = Cl and Br). J. Phys. Chem. A 113(19), 5496–5505 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. H. Saint-Martin, J. Hernández-Cobos, M.I. Bernal-Uruchurtu, I. Ortega-Blake, H.J. Berendsen, A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water–water interaction. J. Chem. Phys. 113(24), 10899–10912 (2000)

    Article  CAS  Google Scholar 

  35. C. de Grotthuss, Sur la Décomposition de l’eau et des Corps Qu’elle Tient en Dissolution à l’aide de l’électricité. Galvanique Ann Chim, LVIII: 54–74, (1806)

    Google Scholar 

  36. A. Hassanali, F. Giberti, J. Cuny, T.D. Kuhne, M. Parrinello, Proton transfer through the water gossamer. Proc. Natl. Acad. Sci. U.S.A. 110(34), 13723–13728 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A.E. Stearn, H. Eyring, The deduction of reaction mechanisms from the theory of absolute rates. J. Chem. Phys. 5(2), 113–124 (1937)

    Article  CAS  Google Scholar 

  38. M.L. Huggins, Hydrogen bridges in ice and liquid water. J. Phys. Chem. 40(6), 723–731 (1936)

    Article  CAS  Google Scholar 

  39. G. Wannier, Die Beweglichkeit des Wasserstoff-und Hydroxylions in wäßriger Lösung. I. Annalen der Physik 416(6), 545–568 (1935)

    Article  Google Scholar 

  40. N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5), 456–462 (1995)

    Article  CAS  Google Scholar 

  41. M. Eigen, Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Ed. Engl. 3(1), 1–19 (1964)

    Article  Google Scholar 

  42. G. Zundel, P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond. Recent developments in theory and experiments, vol. 2, 1976

    Google Scholar 

  43. J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)

    Article  CAS  Google Scholar 

  45. C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: Solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)

    Article  CAS  Google Scholar 

  46. C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Ser. Chem. Phys. vol. 113. (Springer, Heidelberg, 2016), 494pp

    Google Scholar 

  47. H.S. Frank, W.Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc. 24, 133–140 (1957)

    Article  Google Scholar 

  48. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  CAS  Google Scholar 

  49. S.A. Harich, D.W.H. Hwang, X. Yang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. phys. 113(22), 10073–10090 (2000)

    Article  CAS  Google Scholar 

  50. S.A. Harich, X. Yang, D.W. Hwang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. Phys. 114(18), 7830–7837 (2001)

    Article  CAS  Google Scholar 

  51. Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)

    Article  CAS  Google Scholar 

  53. C. Drechsel-Grau, D. Marx, Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects. Phys. Chem. Chem. Phys. 19(4), 2623–2635 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. J.M. Heuft, E.J. Meijer, Density functional theory based molecular-dynamics study of aqueous chloride solvation. J. Chem. Phys. 119(22), 11788–11791 (2003)

    Article  CAS  Google Scholar 

  55. J.M. Heuft, E.J. Meijer, A density functional theory based study of the microscopic structure and dynamics of aqueous HCl solutions. Phys. Chem. Chem. Phys. 8(26), 3116–3123 (2006)

    Article  CAS  PubMed  Google Scholar 

  56. S. Raugei, M.L. Klein, An ab initio study of water molecules in the bromide ion solvation shell. J. Chem. Phys. 116(1), 196–202 (2002)

    Article  CAS  Google Scholar 

  57. M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103(1), 150–161 (1995)

    Article  CAS  Google Scholar 

  58. D. Hollas, O. Svoboda, P. Slavíček, Fragmentation of HCl–water clusters upon ionization: Non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 622, 80–85 (2015)

    Article  CAS  Google Scholar 

  59. R. Shi, K. Li, Y. Su, L. Tang, X. Huang, L. Sai, J. Zhao, Revisit the landscape of protonated water clusters H + (H2O) n with n = 10–17: An ab initio global search. J. Chem. Phys. 148(17), 174305 (2018)

    Article  PubMed  CAS  Google Scholar 

  60. C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh, H. Knorke, K.D. Jordan, A.B. McCoy, K.R. Asmis, M.A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. O. Teschke, J. Roberto de Castro, J.F. Valente Filho, D.M. Soares, Hydrated excess proton raman spectral densities probed in floating water bridges. ACS Omega. 3(10), 13977–13983 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. E. Codorniu-Hernández, P.G. Kusalik, Probing the mechanisms of proton transfer in liquid water. Proc. Natl. Acad. Sci. 110(34), 13697–13698 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  63. X. Kong, A. Waldner, F. Orlando, L. Artiglia, T. Huthwelker, M. Ammann, T. Bartels-Rausch, Coexistence of physisorbed and solvated HCl at warm ice surfaces. J. Phys. Chem. Lett. 8(19), 4757–4762 (2017)

    Article  CAS  PubMed  Google Scholar 

  64. T. Lewis, B. Winter, A.C. Stern, M.D. Baer, C.J. Mundy, D.J. Tobias, J.C. Hemminger, Does nitric acid dissociate at the aqueous solution surface? J. Phys. Chem. C 115(43), 21183–21190 (2011)

    Article  CAS  Google Scholar 

  65. K. Dong, S. Zhang, Hydrogen bonds: a structural insight into ionic liquids. Chem. A Eur. J. 18(10), 2748–2761 (2012)

    Article  CAS  Google Scholar 

  66. K. Dong, S. Zhang, Q. Wang, A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58(3), 495–500 (2015)

    Article  CAS  Google Scholar 

  67. D.B. Wong, C.H. Giammanco, E.E. Fenn, M.D. Fayer, Dynamics of isolated water molecules in a sea of ions in a room temperature ionic liquid. J. of Phys. Chem. B 117(2), 623–635 (2013)

    Article  CAS  Google Scholar 

  68. X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)

    Article  CAS  Google Scholar 

  69. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)

    Article  CAS  Google Scholar 

  71. Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)

    Article  CAS  Google Scholar 

  72. M. Druchok, M. Holovko, Structural changes in water exposed to electric fields: A molecular dynamics study. J. Mol. Liq. 212, 969–975 (2015)

    Article  CAS  Google Scholar 

  73. C.Q. Sun, Perspective:Unprecedented O:⇔: O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)

    Article  CAS  PubMed  Google Scholar 

  74. Y. Zhou, Y. Huang, Y. Gong, C.Q. Sun, O:H–O bond electrification in the aqueous YI solutions (Y = Na, K, Rb, Cs). Communicated, (2016)

    Google Scholar 

  75. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Phy. Rev. B 45(23), 13244–13249 (1992)

    Article  CAS  Google Scholar 

  76. F. Ortmann, F. Bechstedt, W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)

    Article  CAS  Google Scholar 

  77. E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (Dover, New York, 1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C.Q. (2019). Lewis Acidic Solutions: H↔H Fragilization. In: Solvation Dynamics. Springer Series in Chemical Physics, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-13-8441-7_4

Download citation

Publish with us

Policies and ethics