Solvation Dynamics pp 85-102 | Cite as
Lewis Acidic Solutions: H↔H Fragilization
- 218 Downloads
Abstract
Solvation dissolves the HX into an H+ and an X−. The H+ bonds to a H2O to form a firm H3O+ and a H↔H anti − HB point breaker. The H–O bond due H3O+ is 3% shorter and the associated O:H nonbond is 60% longer than normal. The H↔H compression shortens its nearest O:H nonbond by 11% and lengthens the H–O by 4%. The X− point polarizer shortens the H–O bond and stiffens its phonon but relax the O:H nonbond oppositely in the supersolid hydration shell. The X− solute capability of bond transition follows the I > Br > Cl order in the form of fx(C) ∝ 1 − exp(−C/C0) towards saturation because of the involvement of the X−↔X− interaction that weakens the hydration-shell electric field at higher concentrations. However, the H+ neither hops or tunnels freely nor polarize its neighbors, fH(C) = 0. The H↔H has the same effect of heating on the surface stress and solution viscosity disruption.
References
- 1.S. Arrhenius, Development of the theory of electrolytic Dissociation. Nobel Lecture, (1903)Google Scholar
- 2.J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)CrossRefGoogle Scholar
- 3.T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)CrossRefGoogle Scholar
- 4.G.N. Lewis, Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938)CrossRefGoogle Scholar
- 5.C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)PubMedCrossRefGoogle Scholar
- 6.W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theory Comput. 12(10), 5117–5131 (2016)PubMedCrossRefGoogle Scholar
- 7.T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)CrossRefGoogle Scholar
- 8.D. Liu, G. Ma, L.M. Levering, H.C. Allen, Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108(7), 2252–2260 (2004)CrossRefGoogle Scholar
- 9.Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)PubMedCrossRefGoogle Scholar
- 10.J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)PubMedCrossRefGoogle Scholar
- 11.J. Zhang, J.-L. Kuo, T. Iitaka, First principles molecular dynamics study of filled ice hydrogen hydrate. J. Chem. Phys. 137(8), 084505 (2012)PubMedCrossRefGoogle Scholar
- 12.B.L. Bhargava, Y. Yasaka, M.L. Klein, Computational studies of room temperature ionic liquid-water mixtures. Chem. Commun. 47(22), 6228–6241 (2011)CrossRefGoogle Scholar
- 13.S. Saita, Y. Kohno, N. Nakamura, H. Ohno, Ionic liquids showing phase separation with water prepared by mixing hydrophilic and polar amino acid ionic liquids. Chem. Commun. 49(79), 8988–8990 (2013)CrossRefGoogle Scholar
- 14.E.S. Stoyanov, I.V. Stoyanova, C.A. Reed, The unique nature of H+ in water. Chem. Sci. 2(3), 462–472 (2011)CrossRefGoogle Scholar
- 15.S. Heiles, R.J. Cooper, M.J. DiTucci, E.R. Williams, Hydration of guanidinium depends on its local environment. Chem. Sci. 6(6), 3420–3429 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefGoogle Scholar
- 17.H. Chen, W. Gan, B.H. Wu, D. Wu, Y. Guo, H.F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phy. Chem. B 109(16), 8053–8063 (2005)CrossRefGoogle Scholar
- 18.M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)PubMedCrossRefGoogle Scholar
- 19.S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
- 20.M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)PubMedCrossRefGoogle Scholar
- 21.F. Dahms, R. Costard, E. Pines, B.P. Fingerhut, E.T. Nibbering, T. Elsaesser, The hydrated excess proton in the zundel cation H5 O2 (+): The role of ultrafast solvent fluctuations. Angew. Chem. Int. Ed. Engl. 55(36), 10600–10605 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
- 22.J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRefGoogle Scholar
- 23.I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRefGoogle Scholar
- 24.P.M. Kiefer, J.T. Hynes, Theoretical aspects of tunneling proton transfer reactions in a polar environment. J. Phys. Org. Chem. 23(7), 632–646 (2010)CrossRefGoogle Scholar
- 25.S. Daschakraborty, P.M. Kiefer, Y. Miller, Y. Motro, D. Pines, E. Pines, J.T. Hynes, Reaction mechanism for direct proton transfer from carbonic acid to a strong base in aqueous solution I: Acid and base coordinate and charge dynamics. J. Phys. Chem. B 120(9), 2271–2280 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
- 26.N.B.-M. Kalish, E. Shandalov, V. Kharlanov, D. Pines, E. Pines, Apparent stoichiometry of water in proton hydration and proton dehydration reactions in CH3CN/H2O solutions. J. Phys. Chem. A 115(16), 4063–4075 (2011)PubMedCrossRefGoogle Scholar
- 27.D. Borgis, G. Tarjus, H. Azzouz, An adiabatic dynamical simulation study of the Zundel polarization of strongly H-bonded complexes in solution. J. Chem. Phys. 97(2), 1390–1400 (1992)CrossRefGoogle Scholar
- 28.R. Vuilleumier, D. Borgis, Quantum dynamics of an excess proton in water using an extended empirical valence-bond Hamiltonian. J. Phys. Chem. B 102(22), 4261–4264 (1998)CrossRefGoogle Scholar
- 29.R. Vuilleumier, D. Borgis, Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J. Chem. Phys. 111(9), 4251–4266 (1999)CrossRefGoogle Scholar
- 30.K. Ando, J.T. Hynes, Molecular mechanism of HCl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101(49), 10464–10478 (1997)CrossRefGoogle Scholar
- 31.K. Ando, J.T. Hynes, HF acid ionization in water: the first step. Faraday Discuss. 102, 435–441 (1995)CrossRefGoogle Scholar
- 32.D. Borgis, J.T. Hynes, Molecular-dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J. Chem. Phys. 94(5), 3619–3628 (1991)CrossRefGoogle Scholar
- 33.M.I. Bernal-Uruchurtu, R. Hernández-Lamoneda, K.C. Janda, On the unusual properties of halogen bonds: A detailed ab initio study of X2 − (H2O) 1–5 clusters (X = Cl and Br). J. Phys. Chem. A 113(19), 5496–5505 (2009)PubMedCrossRefGoogle Scholar
- 34.H. Saint-Martin, J. Hernández-Cobos, M.I. Bernal-Uruchurtu, I. Ortega-Blake, H.J. Berendsen, A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water–water interaction. J. Chem. Phys. 113(24), 10899–10912 (2000)CrossRefGoogle Scholar
- 35.C. de Grotthuss, Sur la Décomposition de l’eau et des Corps Qu’elle Tient en Dissolution à l’aide de l’électricité. Galvanique Ann Chim, LVIII: 54–74, (1806)Google Scholar
- 36.A. Hassanali, F. Giberti, J. Cuny, T.D. Kuhne, M. Parrinello, Proton transfer through the water gossamer. Proc. Natl. Acad. Sci. U.S.A. 110(34), 13723–13728 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
- 37.A.E. Stearn, H. Eyring, The deduction of reaction mechanisms from the theory of absolute rates. J. Chem. Phys. 5(2), 113–124 (1937)CrossRefGoogle Scholar
- 38.M.L. Huggins, Hydrogen bridges in ice and liquid water. J. Phys. Chem. 40(6), 723–731 (1936)CrossRefGoogle Scholar
- 39.G. Wannier, Die Beweglichkeit des Wasserstoff-und Hydroxylions in wäßriger Lösung. I. Annalen der Physik 416(6), 545–568 (1935)CrossRefGoogle Scholar
- 40.N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5), 456–462 (1995)CrossRefGoogle Scholar
- 41.M. Eigen, Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Ed. Engl. 3(1), 1–19 (1964)CrossRefGoogle Scholar
- 42.G. Zundel, P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond. Recent developments in theory and experiments, vol. 2, 1976Google Scholar
- 43.J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)PubMedCrossRefGoogle Scholar
- 44.X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
- 45.C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: Solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRefGoogle Scholar
- 46.C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Ser. Chem. Phys. vol. 113. (Springer, Heidelberg, 2016), 494ppGoogle Scholar
- 47.H.S. Frank, W.Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc. 24, 133–140 (1957)CrossRefGoogle Scholar
- 48.L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)CrossRefGoogle Scholar
- 49.S.A. Harich, D.W.H. Hwang, X. Yang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. phys. 113(22), 10073–10090 (2000)CrossRefGoogle Scholar
- 50.S.A. Harich, X. Yang, D.W. Hwang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. Phys. 114(18), 7830–7837 (2001)CrossRefGoogle Scholar
- 51.Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)PubMedCrossRefGoogle Scholar
- 52.D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)CrossRefGoogle Scholar
- 53.C. Drechsel-Grau, D. Marx, Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects. Phys. Chem. Chem. Phys. 19(4), 2623–2635 (2017)PubMedCrossRefGoogle Scholar
- 54.J.M. Heuft, E.J. Meijer, Density functional theory based molecular-dynamics study of aqueous chloride solvation. J. Chem. Phys. 119(22), 11788–11791 (2003)CrossRefGoogle Scholar
- 55.J.M. Heuft, E.J. Meijer, A density functional theory based study of the microscopic structure and dynamics of aqueous HCl solutions. Phys. Chem. Chem. Phys. 8(26), 3116–3123 (2006)PubMedCrossRefGoogle Scholar
- 56.S. Raugei, M.L. Klein, An ab initio study of water molecules in the bromide ion solvation shell. J. Chem. Phys. 116(1), 196–202 (2002)CrossRefGoogle Scholar
- 57.M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103(1), 150–161 (1995)CrossRefGoogle Scholar
- 58.D. Hollas, O. Svoboda, P. Slavíček, Fragmentation of HCl–water clusters upon ionization: Non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 622, 80–85 (2015)CrossRefGoogle Scholar
- 59.R. Shi, K. Li, Y. Su, L. Tang, X. Huang, L. Sai, J. Zhao, Revisit the landscape of protonated water clusters H + (H2O) n with n = 10–17: An ab initio global search. J. Chem. Phys. 148(17), 174305 (2018)PubMedCrossRefGoogle Scholar
- 60.C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh, H. Knorke, K.D. Jordan, A.B. McCoy, K.R. Asmis, M.A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016)PubMedCrossRefGoogle Scholar
- 61.O. Teschke, J. Roberto de Castro, J.F. Valente Filho, D.M. Soares, Hydrated excess proton raman spectral densities probed in floating water bridges. ACS Omega. 3(10), 13977–13983 (2018)PubMedCrossRefGoogle Scholar
- 62.E. Codorniu-Hernández, P.G. Kusalik, Probing the mechanisms of proton transfer in liquid water. Proc. Natl. Acad. Sci. 110(34), 13697–13698 (2013)PubMedCrossRefGoogle Scholar
- 63.X. Kong, A. Waldner, F. Orlando, L. Artiglia, T. Huthwelker, M. Ammann, T. Bartels-Rausch, Coexistence of physisorbed and solvated HCl at warm ice surfaces. J. Phys. Chem. Lett. 8(19), 4757–4762 (2017)PubMedCrossRefGoogle Scholar
- 64.T. Lewis, B. Winter, A.C. Stern, M.D. Baer, C.J. Mundy, D.J. Tobias, J.C. Hemminger, Does nitric acid dissociate at the aqueous solution surface? J. Phys. Chem. C 115(43), 21183–21190 (2011)CrossRefGoogle Scholar
- 65.K. Dong, S. Zhang, Hydrogen bonds: a structural insight into ionic liquids. Chem. A Eur. J. 18(10), 2748–2761 (2012)CrossRefGoogle Scholar
- 66.K. Dong, S. Zhang, Q. Wang, A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58(3), 495–500 (2015)CrossRefGoogle Scholar
- 67.D.B. Wong, C.H. Giammanco, E.E. Fenn, M.D. Fayer, Dynamics of isolated water molecules in a sea of ions in a room temperature ionic liquid. J. of Phys. Chem. B 117(2), 623–635 (2013)CrossRefGoogle Scholar
- 68.X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRefGoogle Scholar
- 69.X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)PubMedCrossRefGoogle Scholar
- 70.Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRefGoogle Scholar
- 71.Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRefGoogle Scholar
- 72.M. Druchok, M. Holovko, Structural changes in water exposed to electric fields: A molecular dynamics study. J. Mol. Liq. 212, 969–975 (2015)CrossRefGoogle Scholar
- 73.C.Q. Sun, Perspective:Unprecedented O:⇔: O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)PubMedCrossRefGoogle Scholar
- 74.Y. Zhou, Y. Huang, Y. Gong, C.Q. Sun, O:H–O bond electrification in the aqueous YI solutions (Y = Na, K, Rb, Cs). Communicated, (2016)Google Scholar
- 75.J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Phy. Rev. B 45(23), 13244–13249 (1992)CrossRefGoogle Scholar
- 76.F. Ortmann, F. Bechstedt, W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)CrossRefGoogle Scholar
- 77.E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (Dover, New York, 1980)Google Scholar