Theory: Aqueous Charge Injection by Solvation

  • Chang Q SunEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 121)


Solvation is a process of aqueous charge injection in the forms of H+, electrons, electron lone pairs, cations, anions, or  molecular dipoles with long- and short-range interaction. A solute interacts with its neighboring H2O molecules through the O:H vdW, O:⇔:O super-HB compression, H↔H anti-HB fragilization, ionic or dipolar polarization with screen shielding, and solute-solute interaction and their combinations. The hydration H2O dipoles tend to be aligned oppositely along the electric field screen in turn the electric fields of the solute. The ionic size, charge quantity, and the numbers and spatial distribution of H+ and “:” determine the form of solute-solvent interaction. A solute may be sensitive or not to interference of other solutes depending on the solute size and its extent of screening. The intermolecular nonbond and intramolecular bond cooperative relaxation determines the performance of a solution in terms of surface stress, solution viscosity, energy absorption-emission-dissipation at solvation, solvation temperature, thermal stability, critical pressures and pressures for phase transition.


  1. 1.
    R. Qi, Q. Wang, P. Ren, General van der Waals potential for common organic molecules. Bioorg. Med. Chem. 24(20), 4911–4919 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    P.W. Atkins, Physical Chemistry, 4 edn. (Oxford University Press, 1990)Google Scholar
  3. 3.
    C. Vega, J.L.F. Abascal, M.M. Conde, J.L. Aragones, What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141, 251–276 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    V. Molinero, E.B. Moore, Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113(13), 4008–4016 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    P.T. Kiss, A. Baranyai, Density maximum and polarizable models of water. J. Chem. Phys. 137(8), 084506–084508 (2012)PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    J. Alejandre, G.A. Chapela, H. Saint-Martin, N. Mendoza, A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q. Phys. Chem. Chem. Phys. 13, 19728–19740 (2011)PubMedCrossRefGoogle Scholar
  8. 8.
    M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)CrossRefGoogle Scholar
  9. 9.
    C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys. 113 (2016)Google Scholar
  10. 10.
    C.Q. Sun, Relaxation of the chemical bond. Springer Ser. Chem. Phys. 108 (2014)Google Scholar
  11. 11.
    C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)CrossRefGoogle Scholar
  12. 12.
    W.T. Zheng, C.Q. Sun, Electronic process of nitriding: Mechanism and applications. Prog. Solid State Chem. 34(1), 1–20 (2006)CrossRefGoogle Scholar
  13. 13.
    Z. Zhang, D. Li, W. Jiang, Z. Wang, The electron density delocalization of hydrogen bond systems. Adv. Phys. X 3(1), 1428915 (2018)Google Scholar
  14. 14.
    Y. Mo, J. Gao, Polarization and charge-transfer effects in aqueous solution via Ab initio QM/MM simulations. J. Phys. Chem. B 110(7), 2976–2980 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)PubMedCrossRefGoogle Scholar
  16. 16.
    Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)CrossRefGoogle Scholar
  17. 17.
    J.R. Lane, CCSDTQ optimized geometry of water dimer. J. Chem. Theory Comput. 9(1), 316–323 (2013)PubMedCrossRefGoogle Scholar
  18. 18.
    X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRefGoogle Scholar
  20. 20.
    R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991)Google Scholar
  21. 21.
    Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)CrossRefGoogle Scholar
  22. 22.
    Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)CrossRefGoogle Scholar
  24. 24.
    C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang, Y. Ma, High pressure partially ionic phase of water ice. Nat. Commun. 2, 563 (2011)PubMedCrossRefGoogle Scholar
  26. 26.
    C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)CrossRefGoogle Scholar
  27. 27.
    N. Bjerrum, Structure and properties of ice. Nat. 115(2989), 385–390 (1952)PubMedCrossRefGoogle Scholar
  28. 28.
    M.d. Koning, A.l. Antonelli, A.J.R.d. Silva, and A. Fazzio, Orientational defects in ice Ih: an interpretation of electrical conductivity measurements. Phys. Rev. Lett. 96(075501) (2006)Google Scholar
  29. 29.
    M. Millot, F. Coppari, J.R. Rygg, A. Correa Barrios, S. Hamel, D.C. Swift, and J.H. Eggert, Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nat. 569(7755), 251–255 (2019)PubMedCrossRefGoogle Scholar
  30. 30.
    C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy. J. Chem. Phys. 117(16), 7738–7744 (2002)CrossRefGoogle Scholar
  32. 32.
    F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)CrossRefGoogle Scholar
  33. 33.
    C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Harms, J.P. Toennies, F. Dalfovo, Density of superfluid helium droplets. Phys. Rev. B 58(6), 3341 (1998)CrossRefGoogle Scholar
  35. 35.
    J. Day, J. Beamish, Low-temperature shear modulus changes in solid He-4 and connection to supersolidity. Nature 450(7171), 853–856 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)CrossRefGoogle Scholar
  37. 37.
    X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    C. Medcraft, D. McNaughton, C.D. Thompson, D.R.T. Appadoo, S. Bauerecker, E.G. Robertson, Water ice nanoparticles: size and temperature effects on the mid-infrared spectrum. Phys. Chem. Chem. Phys. 15(10), 3630–3639 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    C. Medcraft, D. McNaughton, C.D. Thompson, D. Appadoo, S. Bauerecker, E.G. Robertson, Size and temperature dependence in the far-Ir spectra of water ice particles. Astrophys. J. 758(1), 17 (2012)CrossRefGoogle Scholar
  40. 40.
    X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci. Rep. 5, 13655 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiang, C.Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Phys. Chem. Chem. Phys. 16(42), 22995–23002 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998)CrossRefGoogle Scholar
  43. 43.
    K. Sotthewes, P. Bampoulis, H.J. Zandvliet, D. Lohse, B. Poelsema, Pressure induced melting of confined ice. ACS Nano 11(12), 12723–12731 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    R. Moro, R. Rabinovitch, C. Xia, V.V. Kresin, Electric dipole moments of water clusters from a beam deflection measurement. Phys. Rev. Lett. 97(12), 123401 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109(3), 035701 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    B. Wang, W. Jiang, Y. Gao, B.K. Teo, Z. Wang, Chirality recognition in concerted proton transfer process for prismatic water clusters. Nano Res. 9(9), 2782–2795 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Bhatt, A.K. Mishra, C. Murli, A.K. Verma, N. Garg, M.N. Deo, S.M. Sharma, Proton transfer aiding phase transitions in oxalic acid dihydrate under pressure. Phys. Chem. Chem. Phys. 18(11), 8065–8074 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    H. Bhatt, C. Murli, A.K. Mishra, A.K. Verma, N. Garg, M.N. Deo, R. Chitra, S.M. Sharma, Hydrogen bond symmetrization in glycinium oxalate under pressure. J. Phys. Chem. B 120(4), 851–859 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)CrossRefGoogle Scholar
  51. 51.
    Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)CrossRefGoogle Scholar
  52. 52.
    D. Kang, J. Dai, H. Sun, Y. Hou, J. Yuan, Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice 3, (2013). http://www.naturecom/srep/2013/131021/srep03005/metrics
  53. 53.
    K. Dong, S. Zhang, Q. Wang, A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58(3), 495–500 (2015)CrossRefGoogle Scholar
  54. 54.
    F. Li, Z. Men, S. Li, S. Wang, Z. Li, C. Sun, Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 189, 621–624 (2018)CrossRefGoogle Scholar
  55. 55.
    F.B. Li, Z.L. Li, S.H. Wang, S. Li, Z.W. Men, S.L. Ouyang, C.L. Sun, Structure of water molecules from Raman measurements of cooling different concentrations of NaOH solutions. Spectrochimica Acta Part a-Mol. Biomol. Spectrosc. 183, 425–430 (2017)CrossRefGoogle Scholar
  56. 56.
    J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 45(23), 13244–13249 (1992)CrossRefGoogle Scholar
  57. 57.
    F. Ortmann, F. Bechstedt, W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)CrossRefGoogle Scholar
  58. 58.
    Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure X-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. PCCP 14(11), 3852–3858 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996)CrossRefGoogle Scholar
  61. 61.
    U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel, A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by X-ray Raman based extended X-ray absorption fine structure. J. Chem. Phys. 127(17), 174504 (2007)PubMedCrossRefGoogle Scholar
  62. 62.
    K.R. Wilson, B.S. Rude, T. Catalano, R.D. Schaller, J.G. Tobin, D.T. Co, R.J. Saykally, X-ray spectroscopy of liquid water microjets. J. Phys. Chem. B 105(17), 3346–3349 (2001)CrossRefGoogle Scholar
  63. 63.
    A. Narten, W. Thiessen, L. Blum, Atom pair distribution functions of liquid water at 25 °C from neutron diffraction. Science 217(4564), 1033–1034 (1982)PubMedCrossRefGoogle Scholar
  64. 64.
    L. Fu, A. Bienenstock, S. Brennan, X-ray study of the structure of liquid water. J. Chem. Phys. 131(23), 234702 (2009)PubMedCrossRefGoogle Scholar
  65. 65.
    J.-L. Kuo, M.L. Klein, W.F. Kuhs, The effect of proton disorder on the structure of ice-Ih: a theoretical study. J. Chem. Phys. 123(13), 134505 (2005)PubMedCrossRefGoogle Scholar
  66. 66.
    A. Soper, Joint structure refinement of X-ray and neutron diffraction data on disordered materials: application to liquid water. J. Phys.: Condens. Matter 19(33), 335206 (2007)Google Scholar
  67. 67.
    L.B. Skinner, C. Huang, D. Schlesinger, L.G. Pettersson, A. Nilsson, C.J. Benmore, Benchmark oxygen-oxygen pair-distribution function of ambient water from X-ray diffraction measurements with a wide Q-range. J. Chem. Phys. 138(7), 074506 (2013)PubMedCrossRefGoogle Scholar
  68. 68.
    K.T. Wikfeldt, M. Leetmaa, A. Mace, A. Nilsson, L.G.M. Pettersson, Oxygen-oxygen correlations in liquid water: addressing the discrepancy between diffraction and extended x-ray absorption fine-structure using a novel multiple-data set fitting technique. J. Chem. Phys. 132(10), 104513 (2010)PubMedCrossRefGoogle Scholar
  69. 69.
    X. Zhang, S. Chen, J. Li, Hydrogen-bond potential for ice VIII-X phase transition. Sci. Rep. 6, 37161 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)PubMedCrossRefGoogle Scholar
  71. 71.
    M.X. Gu, C.Q. Sun, Z. Chen, T.C.A. Yeung, S. Li, C.M. Tan, V. Nosik, Size, temperature, and bond nature dependence of elasticity and its derivatives on extensibility, Debye temperature, and heat capacity of nanostructures. Phys. Rev. B 75(12), 125403 (2007)CrossRefGoogle Scholar
  72. 72.
    F. Perakis, K. Amann-Winkel, F. Lehmkühler, M. Sprung, D. Mariedahl, J.A. Sellberg, H. Pathak, A. Späh, F. Cavalca, D. Schlesinger, A. Ricci, A. Jain, B. Massani, F. Aubree, C.J. Benmore, T. Loerting, G. Grübel, L.G.M. Pettersson, A. Nilsson, Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc. Natl. Acad. Sci. 114(31), 8193–8198 (2017)PubMedCrossRefGoogle Scholar
  73. 73.
    J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)PubMedCrossRefGoogle Scholar
  74. 74.
    Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefGoogle Scholar
  75. 75.
    F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.Y. Mou, S.H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl. Acad. Sci. U.S.A. 104(2), 424–428 (2007)PubMedCrossRefGoogle Scholar
  76. 76.
    B. Wang, W. Jiang, Y. Gao, Z. Zhang, C. Sun, F. Liu, Z. Wang, Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 7(19), 11680–11683 (2017)CrossRefGoogle Scholar
  77. 77.
    Y. Shi, Z. Zhang, W. Jiang, Z. Wang, Theoretical study on electronic and vibrational properties of hydrogen bonds in glycine-water clusters. Chem. Phys. Lett. 684, 53–59 (2017)CrossRefGoogle Scholar
  78. 78.
    Y. Otsuki, T. Sugimoto, T. Ishiyama, A. Morita, K. Watanabe, Y. Matsumoto, Unveiling subsurface hydrogen-bond structure of hexagonal water ice. Phys. Rev. B 96(11), 115405 (2017)CrossRefGoogle Scholar
  79. 79.
    Y. Liu, J. Wu, Communication: long-range angular correlations in liquid water. J. Chem. Phys. 139(4), 041103 (2013)PubMedCrossRefGoogle Scholar
  80. 80.
    X.Z. Li, B. Walker, A. Michaelides, Quantum nature of the hydrogen bond. Proc. Natl. Acad. Sci. U.S.A. 108(16), 6369–6373 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    R.F. McGuire, F.A. Momany, H.A. Scheraga, Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. J. Phys. Chem. 76, 375–393 (1972)PubMedCrossRefGoogle Scholar
  82. 82.
    N. Kumagai, K. Kawamura, T. Yokokawa, An interatomic potential model for H2O: applications to water and ice polymorphs. Mol. Simul. 12, 177–186 (1994)CrossRefGoogle Scholar
  83. 83.
    J. Sun, G. Niehues, H. Forbert, D. Decka, G. Schwaab, D. Marx, M. Havenith, Understanding THz spectra of aqueous solutions: glycine in light and heavy water. J. Am. Chem. Soc. 136(13), 5031–5038 (2014)PubMedCrossRefGoogle Scholar
  84. 84.
    K. Tielrooij, S. Van Der Post, J. Hunger, M. Bonn, H. Bakker, Anisotropic water reorientation around ions. J. Phys. Chem. B 115(43), 12638–12647 (2011)PubMedCrossRefGoogle Scholar
  85. 85.
    Y. Zhou, Yuan Zhong, X. Liu, Y. Huang, X. Zhang, C.Q. Sun, NaX solvation bonding dynamics: hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J. Mol. Liq. 248(432–438) (2017)CrossRefGoogle Scholar
  86. 86.
    Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H–O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J. Mol. Liq. 244, 415–421 (2017)CrossRefGoogle Scholar
  87. 87.
    X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422: 475–481 (2017)CrossRefGoogle Scholar
  88. 88.
    G.C. Pimentel, A.L. McClellan, The Hydrogen Bond (ed. W.H. Freeman. San Francisco, CA, 1960), p. 475Google Scholar
  89. 89.
    L. Pauling, The Nature of the Chemical Bond. 3 edn. (Cornell University Press, Ithaca, NY 1960)Google Scholar
  90. 90.
    P. Banerjee, T. Chakraborty, Weak hydrogen bonds: insights from vibrational spectroscopic studies. Int. Rev. Phys. Chem. 37(1), 83–123 (2018)CrossRefGoogle Scholar
  91. 91.
    G.R. Desiraju, T. Steiner, The weak hydrogen bond: in structural chemistry and biology. Vol. 9. 2001: Oxford university pressGoogle Scholar
  92. 92.
    P.A. Kollman, L.C. Allen, Theory of the hydrogen bond. Chem. Rev. 72(3), 283–303 (1972)CrossRefGoogle Scholar
  93. 93.
    E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl. Chem. 83(8), 1637–1641 (2011)CrossRefGoogle Scholar
  94. 94.
    M.F. Perutz, The role of aromatic rings as hydrogen-bond acceptors in molecular recognition. Phil. Trans. R. Soc. Lond. A 345(1674), 105–112 (1993)CrossRefGoogle Scholar
  95. 95.
    G. Gilli, P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory, vol. 23 (Oxford University Press, 2009)Google Scholar
  96. 96.
    E.A. Meyer, R.K. Castellano, F. Diederich, Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42(11), 1210–1250 (2003)CrossRefGoogle Scholar
  97. 97.
    J.L. Atwood, F. Hamada, K.D. Robinson, G.W. Orr, R.L. Vincent, X-ray diffraction evidence for aromatic π hydrogen bonding to water. Nature 349(6311), 683 (1991)CrossRefGoogle Scholar
  98. 98.
    W. Saenger, G. Jeffrey, Hydrogen Bonding in Biological Structures (Springer, Berlin, 1991)Google Scholar
  99. 99.
    O. Takahashi, Y. Kohno, M. Nishio, Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. Chem. Rev. 110(10), 6049–6076 (2010)PubMedCrossRefGoogle Scholar
  100. 100.
    C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)CrossRefGoogle Scholar
  101. 101.
    D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)CrossRefGoogle Scholar
  102. 102.
    Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRefGoogle Scholar
  103. 103.
    P. Cotterill, The hydrogen embrittlement of metals. Prog. Mater Sci. 9(4), 205–301 (1961)CrossRefGoogle Scholar
  104. 104.
    D. Hollas, O. Svoboda, P. Slavíček, Fragmentation of HCl–water clusters upon ionization: non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 622, 80–85 (2015)CrossRefGoogle Scholar
  105. 105.
    J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Sel. 2(27), 8517–8523 (2017)Google Scholar
  106. 106.
    Y.Q. Fu, B. Yan, N.L. Loh, C.Q. Sun, P. Hing, Hydrogen embrittlement of titanium during microwave plasma assisted CVD diamond deposition. Surf. Eng. 16(4), 349–354 (2000)CrossRefGoogle Scholar
  107. 107.
    S. Huang, D. Chen, J. Song, D.L. McDowell, T. Zhu, Hydrogen embrittlement of grain boundaries in nickel: an atomistic study. NPJ Comput. Mater. 3, 1 (2017)CrossRefGoogle Scholar
  108. 108.
    L.J. Bartolotti, D. Rai, A.D. Kulkarni, S.P. Gejji, R.K. Pathak, Water clusters (H2O)n [n = 9 − 20] in external electric fields: exotic OH stretching frequencies near breakdown. Comput. Theor. Chem. 1044, 66–73 (2014)CrossRefGoogle Scholar
  109. 109.
    V.M. Goldschmidt, Crystal structure and chemical correlation. Ber. Dtsch. Chem. Ges. 60, 1263–1296 (1927)CrossRefGoogle Scholar
  110. 110.
    M. Druchok, M. Holovko, Structural changes in water exposed to electric fields: a molecular dynamics study. J. Mol. Liq. 212, 969–975 (2015)CrossRefGoogle Scholar
  111. 111.
    Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRefGoogle Scholar
  112. 112.
    X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)CrossRefGoogle Scholar
  113. 113.
    A.W. Omta, M.F. Kropman, S. Woutersen, H.J. Bakker, Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301(5631), 347–349 (2003)PubMedCrossRefGoogle Scholar
  114. 114.
    K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)PubMedCrossRefGoogle Scholar
  115. 115.
    M.R. Rahimpour, M.R. Dehnavi, F. Allahgholipour, D. Iranshahi, S.M. Jokar, Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review. Appl. Energy 99, 496–512 (2012)CrossRefGoogle Scholar
  116. 116.
    R.C. Ramaswamy, P.A. Ramachandran, M.P. Duduković, Coupling exothermic and endothermic reactions in adiabatic reactors. Chem. Eng. Sci. 63(6), 1654–1667 (2008)CrossRefGoogle Scholar
  117. 117.
    N. Shahrin, Solubility and dissolution of drug product: a review. Int. J. Pharm. Life Sci. 2(1), 33–41 (2013)CrossRefGoogle Scholar
  118. 118.
    K. Haldrup, W. Gawelda, R. Abela, R. Alonso-Mori, U. Bergmann, A. Bordage, M. Cammarata, S.E. Canton, A.O. Dohn, T.B. Van Driel, Observing solvation dynamics with simultaneous femtosecond X-ray emission spectroscopy and X-ray scattering. J. Phys. Chem. B 120(6), 1158–1168 (2016)CrossRefGoogle Scholar
  119. 119.
    J.B. Rosenholm, Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors. Adv. Colloid Interface Sci. 247, 264–304CrossRefGoogle Scholar
  120. 120.
    J. Konicek, I. Wadsö, Thermochemical properties of some carboxylic acids, amines and N-substituted amides in aqueous solution. Acta Chem. Scand 25(5), 1461–1551 (1971)CrossRefGoogle Scholar
  121. 121.
    E.L. Ratkova, D.S. Palmer, M.V. Fedorov, Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem. Rev. 115(13), 6312–6356 (2015)CrossRefGoogle Scholar
  122. 122.
    G. G., Hydration thermodynamics of aliphatic alcohols. PCCP, 1(15): 3567–3576, (1999)Google Scholar
  123. 123.
    A.M. Ricks, A.D. Brathwaite, M.A. Duncan, IR spectroscopy of gas phase V(CO2)n+ clusters: solvation-induced electron transfer and activation of CO2. J. Phys. Chem. A 117(45), 11490–11498 (2013)CrossRefGoogle Scholar
  124. 124.
    M. Wohlgemuth, M. Miyazaki, M. Weiler, M. Sakai, O. Dopfer, M. Fujii, R. Mitrić, Solvation dynamics of a single water molecule probed by infrared spectra–theory meets experiment. Angew. Chem. Int. Ed. 53(52), 14601–14604 (2014)CrossRefGoogle Scholar
  125. 125.
    C. Velezvega, D.J. Mckay, T. Kurtzman, V. Aravamuthan, R.A. Pearlstein, J.S. Duca, Estimation of solvation entropy and enthalpy via analysis of water oxygen-hydrogen correlations. J. Chem. Theory Comput. 11(11), 5090 (2015)CrossRefGoogle Scholar
  126. 126.
    A. Zaichikov, M.A. Krest’yaninov, Structural and thermodynamic properties and intermolecular interactions in aqueous and acetonitrile solutions of aprotic amides. J. Struct. Chem. 54(2), 336–344 (2013)CrossRefGoogle Scholar
  127. 127.
    A. Magno, P. Gallo, Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J. Phys. Chem. Lett. 2(9), 977–982 (2011)CrossRefGoogle Scholar
  128. 128.
    K. Liu, C. Wang, J. Ma, G. Shi, X. Yao, H. Fang, Y. Song, J. Wang, Janus effect of antifreeze proteins on ice nucleation. Proc. Natl. Acad. Sci. U.S.A. 113(51), 14739–14744 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)PubMedCrossRefGoogle Scholar
  130. 130.
    F. Jensen, F. Besenbacher, E. Laegsgaard, I. Stensgaard, Dynamics of oxygen-induced reconstruction of Cu(100) studied by scanning tunneling microscopy. Phys. Rev. B 42(14), 9206–9209 (1990)CrossRefGoogle Scholar
  131. 131.
    C.Q. Sun, O–Cu(001): II. VLEED quantification of the four-stage Cu3O2 bonding kinetics. Surf. Rev. Lett. 8(6), 703–734 (2001)Google Scholar
  132. 132.
    J.R. Mercer, P. Finetti, F.M. Leibsle, R. McGrath, V.R. Dhanak, A. Baraldi, K.C. Prince, R. Rosei, STM and SPA-LEED studies of O-induced structures on Rh(100) surfaces. Surf. Sci. 352, 173–178 (1996)CrossRefGoogle Scholar
  133. 133.
    C.Q. Sun, Electronic process of Cu(Ag, V, Rh)(001) surface oxidation: atomic valence evolution and bonding kinetics. Appl. Surf. Sci. 246(1–3), 6–13 (2005)CrossRefGoogle Scholar
  134. 134.
    Q.S. Chang, H. Xie, W. Zhang, H. Ye, P. Hing, Preferential oxidation of diamond {111}. J. Phys. D Appl. Phys. 33(17), 2196 (2000)CrossRefGoogle Scholar
  135. 135.
    H. Wolter, K. Meinel, C. Ammer, K. Wandelt, H. Neddermeyer, O-mediated layer growth of Cu on Ru (0001). J. Phys.: Condens. Matter 11(1), 19 (1999)Google Scholar
  136. 136.
    K. Meinel, C. Ammer, M. Mitte, H. Wolter, H. Neddermeyer, Effects and structures of the O/Cu surfactant layer in O-mediated film growth of Cu on Ru (0 0 0 1). Prog. Surf. Sci. 67(1–8), 183–203 (2001)CrossRefGoogle Scholar
  137. 137.
    M. Schmidt, H. Wolter, M. Schick, K. Kalki, K. Wandelt, Compression phases in copper/oxygen coadsorption layers on a Ru (0001) surface. Surf. Sci. 287, 983–987 (1993)CrossRefGoogle Scholar
  138. 138.
    M. Schmidt, H. Wolter, K. Wandelt, Work-function oscillations during the surfactant induced layer-by-layer growth of copper on oxygen precovered Ru (0001). Surf. Sci. 307, 507–513 (1994)CrossRefGoogle Scholar
  139. 139.
    M. Karolewski, Determination of growth modes of Cu on O/Ni (1 0 0) and NiO (1 0 0) surfaces by SIMS and secondary electron emission measurements. Surf. Sci. 517(1–3), 138–150 (2002)CrossRefGoogle Scholar
  140. 140.
    W. Wulfhekel, N.N. Lipkin, J. Kliewer, G. Rosenfeld, L.C. Jorritsma, B. Poelsema, G. Comsa, Conventional and manipulated growth of Cu/Cu (111). Surf. Sci. 348(3), 227–242 (1996)CrossRefGoogle Scholar
  141. 141.
    M. Yata, H. Rouch, K. Nakamura, Kinetics of oxygen surfactant in Cu (001) homoepitaxial growth. Phys. Rev. B 56(16), 10579 (1997)CrossRefGoogle Scholar
  142. 142.
    J. Whitten, R. Gomer, Reactivity of Ni on oxygen-covered W (110) surfaces. J. Vac. Sci. Technol. A: Vac., Surf., Films 13(5), 2540–2546 (1995)CrossRefGoogle Scholar
  143. 143.
    C. Sun, Time-resolved VLEED from the O-Cu (001): atomic processes of oxidation. Vacuum 48(6), 525–530 (1997)CrossRefGoogle Scholar
  144. 144.
    J.W. Frenken, J. Van der Veen, G. Allan, Relation between surface relaxation and surface force constants in clean and oxygen-covered Ni (001). Phys. Rev. Lett. 51(20), 1876 (1983)CrossRefGoogle Scholar
  145. 145.
    J. Peng, D. Cao, Z. He, J. Guo, P. Hapala, R. Ma, B. Cheng, J. Chen, W.J. Xie, X.-Z. Li, P. Jelínek, L.-M. Xu, Y.Q. Gao, E.-G. Wang, Y. Jiang, The effect of hydration number on the interfacial transport of sodium ions. Nature 557, 701–705 (2018)PubMedCrossRefGoogle Scholar
  146. 146.
    M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)Google Scholar
  147. 147.
    A. Bragg, J. Verlet, A. Kammrath, O. Cheshnovsky, D. Neumark, Hydrated electron dynamics: from clusters to bulk. Science 306(5696), 669–671 (2004)CrossRefGoogle Scholar
  148. 148.
    A.E. Bragg, J.R.R. Verlet, A. Kammrath, O. Cheshnovsky, D.M. Neumark, Electronic relaxation dynamics of water cluster anions. J. Am. Chem. Soc. 127(43), 15283–15295 (2005)PubMedCrossRefGoogle Scholar
  149. 149.
    A. Kammrath, J.R. Verlet, A.E. Bragg, G.B. Griffin, D.M. Neumark, Dynamics of charge-transfer-to-solvent precursor states in I-(water) n (n = 3–10) clusters studied with photoelectron imaging. The J. Phys. Chem. A 109(50), 11475–11483 (2005)PubMedCrossRefGoogle Scholar
  150. 150.
    A. Kammrath, G. Griffin, D. Neumark, J.R.R. Verlet, Photoelectron spectroscopy of large (water)[sub n][sup −] (n = 50–200) clusters at 4.7 eV. The J. Chem. Phys. 125(7), 076101 (2006)Google Scholar
  151. 151.
    D. Sagar, C.D. Bain, J.R. Verlet, Hydrated electrons at the water/air interface. J. Am. Chem. Soc. 132(20), 6917–6919 (2010)PubMedCrossRefGoogle Scholar
  152. 152.
    J. Verlet, A. Bragg, A. Kammrath, O. Cheshnovsky, D. Neumark, Observation of large water-cluster anions with surface-bound excess electrons. Science 307(5706), 93–96 (2005)CrossRefGoogle Scholar
  153. 153.
    X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. rev. 115(14), 6746–6810 (2015)CrossRefGoogle Scholar
  154. 154.
    C.Q. Sun, Atomic scale purification of electron spectroscopic information (US 2017 patent No. 9,625,397B2). 2017: United StatesGoogle Scholar
  155. 155.
    Y. Gong, Y. Zhou, C. Sun, Phonon Spectrometrics of the Hydrogen Bond (O:H–O) Segmental Length and Energy Relaxation Under Excitation (B.o. Intelligence, Editor., China, 2018)Google Scholar
  156. 156.
    A. Mailleur, C. Pirat, O. Pierre-Louis, J. Colombani, Hollow Rims from water drop evaporation on salt substrates. Phys. Rev. Lett. 121, 124501 (2018)CrossRefGoogle Scholar
  157. 157.
    R. Deegan, O. Bakajin, T. Dupont, G. Huber, T.W.S. Nagel, Capillary flow as the cause of ring stains from dried liquid drops. Nat. (Lond.) 389, 827 (1997)CrossRefGoogle Scholar
  158. 158.
    P. Sáenz, A. Wray, Z. Che, O. Matar, P. Valluri, J. Kim, K. Sefiane, Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat. Commun. 8, 14783 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    N. Shahidzadeh-Bonn, S. Rafaï, D. Bonn, G. Wegdam, Salt crystallization during evaporation: impact of interfacial properties. Langmuir 24, 8599 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    N. Shahidzadeh, M. Schut, J. Desarnaud, M. Prat, D. Bonn, Salt stains from evaporating droplets. Sci. Rep. 5, 10335 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    A. Tay, D. Bendejacq, C. Monteux, F. Lequeux, How does water wet a hydrosoluble substrate? Soft Matter 7, 6953 (2011)CrossRefGoogle Scholar
  162. 162.
    J. Dupas, E. Verneuil, M. Ramaioli, L. Forny, L. Talini, F. Lequeux, Dynamic wetting on a thin film of soluble polymer: effects of nonlinearities in the sorption isotherm. Langmuir 29, 12572 (2013)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Yangtze Normal UniversityChongqingChina

Personalised recommendations