Differential Phonon Spectrometrics (DPS)

  • Chang Q SunEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 121)


An incorporation of the hydrogen bond cooperativity theory to the DPS strategy and surface stress (contact angle) detection could resolve the solvation bonding and nonbonding dynamics and solute capabilities. The enabled information includes bond length and stiffness transition, electron polarization, and the fraction of bonds transformed from the mode of ordinary water to the hydration shells. A combination of the DPS and the ultrafast IR spectroscopy would be more revealing towards solute-solvent and solute-solute molecular interactions, solute capabilities, and solution properties. The DPS is focused on the solvation O:H–O segmental cooperative bonding dynamics and the ultrafast IR on molecular motion dynamics by measuring phonon relaxation time.


  1. 1.
    C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)CrossRefGoogle Scholar
  3. 3.
    Z.S. Nickolov, J. Miller, Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band. J. Colloid Interface Sci. 287(2), 572–580 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Park, M.B. Ji, K.J. Gaffney, Ligand exchange dynamics in aqueous solution studied with 2DIR spectroscopy. J. Phys. Chem. B 114(19), 6693–6702 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Brinzer, E.J. Berquist, Z. Ren, 任哲, S. Dutta, C.A. Johnson, C.S. Krisher, D.S. Lambrecht, S. Garrett-Roe, Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: carbon capture from carbon dioxide’s point of view. The J. Chem. Phys. 142(21), 212425 (2015)Google Scholar
  6. 6.
    Y.R. Shen, Basic theory of surface sum-frequency generation. The J. Phys. Chem. C 116, 15505–15509 (2012)CrossRefGoogle Scholar
  7. 7.
    Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefGoogle Scholar
  8. 8.
    J. Verlet, A. Bragg, A. Kammrath, O. Cheshnovsky, D. Neumark, Observation of large water-cluster anions with surface-bound excess electrons. Science 307(5706), 93–96 (2005)CrossRefGoogle Scholar
  9. 9.
    I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRefGoogle Scholar
  10. 10.
    J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRefGoogle Scholar
  11. 11.
    S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Wang, Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. Int. Rev. Phys. Chem. 36(3), 377–431 (2017)CrossRefGoogle Scholar
  13. 13.
    R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991)Google Scholar
  14. 14.
    X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRefGoogle Scholar
  15. 15.
    C.Q. Sun, Atomic scale purification of electron spectroscopic information (U.S. 2017 Patent No. 9,625,397B2) (United States, 2017)Google Scholar
  16. 16.
    X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)CrossRefGoogle Scholar
  17. 17.
    Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)CrossRefGoogle Scholar
  18. 18.
    Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Nagasaka, H. Yuzawa, N. Kosugi, Development and application of in situ/operando soft X-ray transmission cells to aqueous solutions and catalytic and electrochemical reactions. J. Electron Spectrosc. Relat. Phenom. 200, 293–310 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)CrossRefGoogle Scholar
  22. 22.
    J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119(23), 7015–7029 (2015)CrossRefGoogle Scholar
  23. 23.
    C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bondin thermodynamics: solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, W. Zhu, K. Lin, L. Yuan, X. Zhou, S. Liu, Ratiometric detection of Raman hydration shell spectra. J. Raman Spectrosc. 47(10), 1231–1238 (2016)CrossRefGoogle Scholar
  25. 25.
    V. Vchirawongkwin, B.M. Rode, I. Persson, Structure and dynamics of sulfate ion in aqueous solution an ab initio QMCF MD simulation and large angle X-ray scattering study. J. Phys. Chem. B 111(16), 4150–4155 (2007)CrossRefGoogle Scholar
  26. 26.
    N. Galamba, Mapping structural perturbations of water in ionic solutions. J. Phys. Chem. B 116(17), 5242–5250 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Bragg, J. Verlet, A. Kammrath, O. Cheshnovsky, D. Neumark, Hydrated electron dynamics: from clusters to bulk. Science 306(5696), 669–671 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Nagasaka, H. Yuzawa, N. Kosugi, Interaction between water and alkali metal ions and its temperature dependence revealed by oxygen K-edge X-ray absorption spectroscopy. J. Phys. Chem. B 121(48), 10957–10964 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Otsuki, T. Sugimoto, T. Ishiyama, A. Morita, K. Watanabe, Y. Matsumoto, Unveiling subsurface hydrogen-bond structure of hexagonal water ice. Phys. Rev. B 96(11), 115405 (2017)CrossRefGoogle Scholar
  30. 30.
    C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys. 113 (2016)Google Scholar
  31. 31.
    Y. Shi, Z. Zhang, W. Jiang, Z. Wang, Theoretical study on electronic and vibrational properties of hydrogen bonds in glycine-water clusters. Chem. Phys. Lett. 684, 53–59 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)CrossRefGoogle Scholar
  33. 33.
    Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)CrossRefGoogle Scholar
  34. 34.
    C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)CrossRefGoogle Scholar
  35. 35.
    C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)CrossRefGoogle Scholar
  36. 36.
    C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater Sci. 54(2), 179–307 (2009)CrossRefGoogle Scholar
  37. 37.
    X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene. Nanoscale 4(2), 502–510 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, T. Loerting, Colloquiu: water’s controversial glass transitions. Rev. Mod. Phys. 88(1), 011002 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Wong, L. Shi, R. Auchettl, D. McNaughton, D.R. Appadoo, E.G. Robertson, Heavy snow: IR spectroscopy of isotope mixed crystalline water ice. Phys. Chem. Chem. Phys. 18(6), 4978–4993 (2016)CrossRefGoogle Scholar
  40. 40.
    X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)CrossRefGoogle Scholar
  41. 41.
    C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)CrossRefGoogle Scholar
  42. 42.
    C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)CrossRefGoogle Scholar
  43. 43.
    Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X= F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Hajati, S. Coultas, C. Blomfield, S. Tougaard, XPS imaging of depth profiles and amount of substance based on Tougaard’s algorithm. Surf. Sci. 600(15), 3015–3021 (2006)CrossRefGoogle Scholar
  45. 45.
    M.P. Seah, I.S. Gilmore, S.J. Spencer, Background subtraction—II. General behaviour of REELS and the Tougaard universal cross section in the removal of backgrounds in AES and XPS. Surf. Sci. 461(1–3), 1–15 (2000)CrossRefGoogle Scholar
  46. 46.
    X.B. Zhou, J.L. Erskine, Surface core-level shifts at vicinal tungsten surfaces. Phys. Rev. B 79(15), 155422 (2009)CrossRefGoogle Scholar
  47. 47.
    Z. Zhang, D. Li, W. Jiang, Z. Wang, The electron density delocalization of hydrogen bond systems. Adv. Phys.: X 3(1), 1428915 (2018)Google Scholar
  48. 48.
    X. Wu, W. Lu, W. Ou, M.C. Caumon, J. Dubessy, Temperature and salinity effects on the Raman scattering cross section of the water OH-stretching vibration band in NaCl aqueous solutions from 0 to 300 °C. J. Raman Spectrosc. 48(2), 314–322 (2016)CrossRefGoogle Scholar
  49. 49.
    Y. Zhou, Y. Huang, L. Li, Y. Gong, X. Liu, X. Zhang, C.Q. Sun, Hydrogen-bond transition from the vibration mode of ordinary water to the (H, Na)I hydration states: molecular interactions and solution viscosity. Vib. Spectrosc. 94, 31–36 (2018)CrossRefGoogle Scholar
  50. 50.
    J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Sel. 2(27), 8517–8523 (2017)Google Scholar
  51. 51.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, Boca Raton, 1999)Google Scholar
  52. 52.
    Q. Wei, D. Zhou, H. Bian, Negligible cation effect on the vibrational relaxation dynamics of water molecules in NaClO4 and LiClO4 aqueous electrolyte solutions. RSC Advances 7(82), 52111–52117 (2017)CrossRefGoogle Scholar
  53. 53.
    J.W. Gibbs, On the equilibrium of heterogeneous substances. Am. J. Sci. 96, 441–458 (1878)CrossRefGoogle Scholar
  54. 54.
    R.C. Cammarata, Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)CrossRefGoogle Scholar
  55. 55.
    T. Young, An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 65–87 (1805)Google Scholar
  56. 56.
    M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)CrossRefGoogle Scholar
  57. 57.
    M.T. Suter, P.U. Andersson, J.B. Pettersson, Surface properties of water ice at 150–191 K studied by elastic helium scattering. J. Chem. Phys. 125(17), 174704 (2006)CrossRefGoogle Scholar
  58. 58.
    C.Q. Sun, Y. Sun, Y.G. Ni, X. Zhang, J.S. Pan, X.H. Wang, J. Zhou, L.T. Li, W.T. Zheng, S.S. Yu, L.K. Pan, Z. Sun, Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J. Phys. Chem. C 113(46), 20009–20019 (2009)CrossRefGoogle Scholar
  59. 59.
    X. Zhang, Y. Huang, Z. Ma, L. Niu, C.Q. Sun, From ice supperlubricity to quantum friction: electronic repulsivity and phononic elasticity. Friction 3(4), 294–319 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Yangtze Normal UniversityChongqingChina

Personalised recommendations