Skip to main content

Equivalence Criteria for Nanomaterials Developed from Results of a Comparative Study Using Intratracheal Administration

  • Chapter
  • First Online:
In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials

Abstract

The toxicity of nanomaterials is complex and multifactorial and likely depends on their diverse physicochemical properties. Further development and application of nanomaterials requires a systematic, effective, and efficient method for evaluating their toxicity. One approach in this regard is to ascertain the variability in the physicochemical properties of nanomaterials that exhibit the same toxicity—that is, to establish “equivalence criteria” for nanomaterials. However, this approach requires the acquisition and comparison of toxicity data for various nanomaterials. In this chapter, we summarize our efforts to establish equivalence criteria for nanomaterials in regard to their toxicity after intratracheal instillation. To achieve this objective, we focused on intratracheal administration studies for evaluating nanomaterial toxicity simply and efficiently. Intratracheal instillation offers various advantages and disadvantages compared with inhalation exposure, which is widely used as a screening tool. In this study, we used intratracheal instillation to deliver a total of 20 nanomaterials representing three types (TiO2, NiO, and SiO2) to rats. We then compared the physicochemical properties and pulmonary toxicities of the tested nanomaterials and thus were able to detect characteristic features of their pulmonary toxic effects according to their physicochemical properties. We here demonstrated the effectiveness of using intratracheal administration studies to screen for pulmonary toxicity of nanomaterials. In addition, we anticipate that our proposed equivalence criteria will facilitate toxicity evaluation of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The European Commission. Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Union (2011/696/EU), 2011.

    Google Scholar 

  2. Hobson DW. Commercialization of nanotechnology. Interdiscip Rev Nanomed. 2009;1:189–202.

    Article  Google Scholar 

  3. Braakhuis HM, Park MV, Gosens I, De Jong WH, Cassee FR. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 2014;11:18.

    Article  Google Scholar 

  4. Ferreira AJ, Cemlyn J, Robalo CC. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Revista Portuguesa de Pneumologia (English Edition). 2013;19(1):28–37.

    Article  CAS  Google Scholar 

  5. Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000;55:24–35.

    Article  CAS  Google Scholar 

  6. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    Article  CAS  Google Scholar 

  7. Nakanishi J. Risk assessment of manufactured nanomaterials: “Approaches”—overview of approaches and results. Final report issued on Aug 17, 2011. NEDO project (P06041) “Research and development of nanoparticle characterisation methods”, 2011.

    Google Scholar 

  8. NIOSH. Occupational exposure to titanium dioxide. Curr Intell Bull. 2011;63:1–119.

    Google Scholar 

  9. Donaldson K, Poland CA. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol. 2013;24:724–34.

    Article  CAS  Google Scholar 

  10. WHO. Determination of airborne fibre number concentrations. A recommended method, by phase-contrast optical microscopy membrane filter method. Determination of airborne fibre number concentrations. A recommended method, by phase-contrast optical microscopy membrane filter method, 1997.

    Google Scholar 

  11. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92:5–22.

    Article  CAS  Google Scholar 

  12. Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010;267:89–105.

    Article  CAS  Google Scholar 

  13. Peigney A, Laurent C, Flahaut R, Bacsa RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001;39:507–14.

    Article  CAS  Google Scholar 

  14. Veronesi B, de Haar C, Lee L, Oortgiesen M. The surface charge of visible particulate matter predicts biological activation in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2002;178:144–54.

    Article  CAS  Google Scholar 

  15. Oortgiesen M, Veronesi B, Eichenbaum G, Kiser PF, Simon SA. Residual oil fly ash and charged polymers activate epithelial cells and nociceptive sensory neurons. Am J Physiol Lung Cell Mol Physiol. 2000;278:L683–95.

    Article  CAS  Google Scholar 

  16. Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, Poland CA, Tran CL, Donaldson K. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci. 2012;126:469–77.

    Article  CAS  Google Scholar 

  17. Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed. 2011;6:2591–605.

    CAS  Google Scholar 

  18. Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A, Ray A, Ghandehari H. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology. 2012;6:713–23.

    Article  CAS  Google Scholar 

  19. Fubini B, Bolis V, Cavenago A, Volante M. Physicochemical properties of crystalline silica dusts and their possible implication in various biological responses. Scand J Work Environ Health. 1995;21(Suppl 2):9–14.

    CAS  PubMed  Google Scholar 

  20. Gebel T, Foth H, Damm G, Freyberger A, Kramer PJ, Lilienblum W, Rohl C, Schupp T, Weiss C, Wollin KM, Hengstler JG. Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol. 2014;88:2191–211.

    Article  CAS  Google Scholar 

  21. Baan RA. Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC Monographs Working Group. Inhal Toxicol. 2007;19(Suppl 1):213–28.

    Article  CAS  Google Scholar 

  22. Morimoto Y, Izumi H, Yoshiura Y, Fujishima K, Yatera K, Yamamoto K. Usefulness of intratracheal instillation studies for estimating nanoparticle-induced pulmonary toxicity. Int J Mol Sci. 2016;17:165.

    Article  Google Scholar 

  23. Hashizume N, Oshima Y, Nakai M, Kobayashi T, Sasaki T, Kawaguchi K, Honda K, Gamo M, Yamamoto K, Tsubokura Y, Ajimi S, Inoue Y, Imatanaka N. Categorization of nano-structured titanium dioxide according to physicochemical characteristics and pulmonary toxicity. Toxicol Rep. 2016;3:490–500.

    Article  CAS  Google Scholar 

  24. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10:15.

    Article  CAS  Google Scholar 

  25. Wang J, Fan Y. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int J Mol Sci. 2014;15:22258–78.

    Article  CAS  Google Scholar 

  26. Oberdorster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect. 1992;97:193–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 2004;61:442–7.

    Article  CAS  Google Scholar 

  28. Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology. 2009;264:110–8.

    Article  CAS  Google Scholar 

  29. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci. 2006;91:227–36.

    Article  CAS  Google Scholar 

  30. Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001;74:1–8.

    Article  CAS  Google Scholar 

  31. Hohr D, Steinfartz Y, Schins RP, Knaapen AM, Martra G, Fubini B, Borm PJ. The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat. Int J Hyg Environ Health. 2002;205:239–44.

    Article  Google Scholar 

  32. Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci. 2005;88:514–24.

    Article  CAS  Google Scholar 

  33. Oyabu T, Morimoto Y, Hirohashi M, Horie M, Kambara T, Woo Lee BW, Hashiba M, Mizuguchi Y, Myojo T, Kuroda E. Dose-dependent pulmonary response of well-dispersed titanium dioxide nanoparticles following intratracheal instillation. J Nanopart Res. 2013;15:1600–10.

    Article  Google Scholar 

  34. Shinohara N, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, Ichinose T, Sasaki T, Kawaguchi K, Zhang G, Gamo M. Pulmonary clearance kinetics and extrapulmonary translocation of seven titanium dioxide nano- and submicron materials following intratracheal administration in rats. Nanotoxicology. 2015;9:1050–8.

    Article  Google Scholar 

  35. Horie M, Fukui H, Endoh S, Maru J, Miyauchi A, Shichiri M, Fujita K, Niki E, Hagihara Y, Yoshida Y, Morimoto Y, Iwahashi H. Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2. Inhal Toxicol. 2012;24:391–400.

    Article  CAS  Google Scholar 

  36. Sager T, Wolfarth M, Keane M, Porter D, Castranova V, Holian A. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung. Nanotoxicology. 2016;10:151–61.

    CAS  PubMed  Google Scholar 

  37. Ogami A, Morimoto Y, Myojo T, Oyabu T, Murakami M, Todoroki M, Nishi K, Kadoya C, Yamamoto M, Tanaka I. Pathological features of different sizes of nickel oxide following intratracheal instillation in rats. Inhal Toxicol. 2009;21:812–8.

    Article  CAS  Google Scholar 

  38. Sunderman FW Jr. Mechanisms of nickel carcinogenesis. Scand J Work Environ Health. 1989;15:1–12.

    Article  CAS  Google Scholar 

  39. Dunnick JK, Elwell MR, Radovsky AE, Benson JM, Hahn FF, Nikula KJ, Barr EB, Hobbs CH. Comparative carcinogenic effects of nickel subsulfide, nickel oxide, or nickel sulfate hexahydrate chronic exposures in the lung. Cancer Res. 1995;55:5251–6.

    CAS  PubMed  Google Scholar 

  40. IARC. Nickel and nickel compounds. IARC monographs on the evaluation of carcinogenic risks to humans. 2012;100C:169–218.

    Google Scholar 

  41. Shinohara N, Zhang G, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, Sasaki T, Kawaguchi K, Gamo M. Kinetics and dissolution of intratracheally administered nickel oxide nanomaterials in rats. Part Fibre Toxicol. 2017;14:48.

    Article  Google Scholar 

  42. Mizuguchi Y, Myojo T, Oyabu T, Hashiba M, Lee BW, Yamamoto M, Todoroki M, Nishi K, Kadoya C, Ogami A, Morimoto Y, Tanaka I, Shimada M, Uchida K, Endoh S, Nakanishi J. Comparison of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorphonuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation. Inhal Toxicol. 2013;25:29–36.

    Article  CAS  Google Scholar 

  43. Zhang Q, Kusaka Y, Zhu X, Sato K, Mo Y, Kluz T, Donaldson K. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup Health. 2003;45:23–30.

    Article  CAS  Google Scholar 

  44. Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Hashiba M, Mizuguchi Y, Kambara T, Lee BW, Kuroda E, Tanaka I. Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. J Occup Health. 2011;53:293–5.

    Article  CAS  Google Scholar 

  45. Benson JM, Chang IY, Cheng YS, Hahn FF, Kennedy CH, Barr EB, Maples KR, Snipes MB. Particle clearance and histopathology in lungs of F344/N rats and B6C3F1 mice inhaling nickel oxide or nickel sulfate. Fundam Appl Toxicol. 1995;28:232–44.

    Article  CAS  Google Scholar 

  46. Kang GS, Gillespie PA, Gunnison A, Rengifo H, Koberstein J, Chen LC. Comparative pulmonary toxicity of inhaled nickel nanoparticles; role of deposited dose and solubility. Inhal Toxicol. 2011;23:95–103.

    Article  CAS  Google Scholar 

  47. Thomas CR, Kelley TR. A brief review of silicosis in the United States. Environ Health Insights. 2010;4:21–6.

    Article  CAS  Google Scholar 

  48. Rimal B, Greenberg AK, Rom WN. Basic pathogenetic mechanisms in silicosis: current understanding. Curr Opin Pulm Med. 2005;11:169–73.

    Article  Google Scholar 

  49. IARC. IARC Working group on the evaluation of carcinogenic risks to humans: silica, some silicates, coal dust and para-aramid fibrils. Lyon, 15–22 October 1996. IARC Monogr Eval Carcinog Risks Hum. 1997;68:1–475.

    Google Scholar 

  50. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med. 2001;58:194–9.

    Article  Google Scholar 

  51. Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci. 2007;95:270–80.

    Article  CAS  Google Scholar 

  52. Clouter A, Brown D, Hohr D, Borm P, Donaldson K. Inflammatory effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates. Toxicol Sci. 2001;63:90–8.

    Article  CAS  Google Scholar 

  53. Pavan C, Rabolli V, Tomatis M, Fubini B, Lison D. Why does the hemolytic activity of silica predict its pro-inflammatory activity? Part Fibre Toxicol. 2014;11:76.

    Article  Google Scholar 

  54. Kaewamatawong T, Kawamura N, Okajima M, Sawada M, Morita T, Shimada A. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol Pathol. 2005;33:743–9.

    Article  CAS  Google Scholar 

  55. Nabeshi H, Yoshikawa T, Arimori A, Yoshida T, Tochigi S, Hirai T, Akase T, Nagano K, Abe Y, Kamada H, Tsunoda S, Itoh N, Yoshioka Y, Tsutsumi Y. Effect of surface properties of silica nanoparticles on their cytotoxicity and cellular distribution in murine macrophages. Nanoscale Res Lett. 2011;6:93.

    Article  Google Scholar 

  56. Fruijtier-Polloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology. 2012;294:61–79.

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the research program “Development of innovative methodology for safety assessment of industrial nanomaterials” supported by the Ministry of Economy, Trade and Industry (METI) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Oshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oshima, Y., Kobayashi, T., Kayashima, T., Nakai, M., Imatanaka, N. (2019). Equivalence Criteria for Nanomaterials Developed from Results of a Comparative Study Using Intratracheal Administration. In: Takebayashi, T., Landsiedel, R., Gamo, M. (eds) In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8433-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8433-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8432-5

  • Online ISBN: 978-981-13-8433-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics