Skip to main content

Development of Intratracheal Intrapulmonary Spraying (TIPS) Administration as a Feasible Assay Method for Testing the Toxicity and Carcinogenic Potential of Multiwall Carbon Nanotubes

  • Chapter
  • First Online:
Book cover In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials

Abstract

Multiwall carbon nanotubes (MWCNTs) are composed of multiple concentric one-atom thick graphene cylinders. The carbon-carbon bonds of graphene are exclusively sp2, which gives MWCNT fibers their extraordinary properties. Production of MWCNTs is rapidly increasing because of their superiority over other materials. However, similarly to asbestos, MWCNTs are highly biopersistent in human tissues when inhaled and deposition in tissues causes sustained inflammatory reactions with the potential of inducing carcinogenesis. Several species of MWCNTs, including MWCNT-7, were shown to induce malignant peritoneal mesotheliomas after intraperitoneal administration in rats and mice; inhalation exposure to MWCNT-7 also induces bronchiolo-alveolar tumors in rats; and MWCNT-N, another type of MWCNT, was shown to induce both bronchiolo-alveolar tumor and pleural malignant mesothelioma in rats after administration by intratracheal intrapulmonary spraying (TIPS). Using the TIPS method, we recently found that another MWCNT, MWCNT-B, was carcinogenic to the lung, and that MWCNT-7 induced malignant pleural mesotheliomas as well as bronchiolo-alveolar tumors. Notably, despite the fact that the intraperitoneal injection studies that established the potential carcinogenicity of MWCNTs were published in 2008–2009, at the time of this writing only a single whole-body inhalation study of the toxicity of respirable MWCNTs has been reported. The lack of testing of these economically important, widely used, and potentially dangerous materials is due to the enormous expense of whole-body inhalation administration and to the very few facilities that are equipped to perform such studies. In contrast to whole-body inhalation testing that requires specialized inhalation facilities, the TIPS method uses commonly available equipment and techniques. Consequently, TIPS administration can be widely used to test the carcinogenicity of respirable materials, promoting evaluation of the toxicity and carcinogenic potential of the numerous types of MWCNTs now being produced. For example, we are currently conducting further testing of MWCNTs using the TIPS method to assess the effect of the shape and physical properties of MWCNTs on their toxicity in the lung and pleura.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5. https://doi.org/10.1186/1743-8977-7-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. Pulmonary toxicity of carbon nanotubes and asbestos—similarities and differences. Adv Drug Deliv Rev. 2013;65(15):2078–86. https://doi.org/10.1016/j.addr.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  3. Fukushima S, Kasai T, Umeda Y, Ohnishi M, Sasaki T, Matsumoto M. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment. J Occup Health. 2018;60(1):10–30. https://doi.org/10.1539/joh.17-0102-RA.

    Article  CAS  PubMed  Google Scholar 

  4. Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, et al. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci. 2009;34(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  5. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 2008;33(1):105–16.

    Article  CAS  PubMed  Google Scholar 

  6. Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A. 2011;108(49):E1330–8. https://doi.org/10.1073/pnas.1110013108.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2014;11:3. https://doi.org/10.1186/1743-8977-11-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takagi A, Hirose A, Futakuchi M, Tsuda H, Kanno J. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci. 2012;103(8):1440–4. https://doi.org/10.1111/j.1349-7006.2012.02318.x.

    Article  CAS  PubMed  Google Scholar 

  9. Grosse Y, Loomis D, Guyton KZ, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 2014;15(13):1427–8. https://doi.org/10.1016/S1470-2045(14)71109-X.

    Article  CAS  PubMed  Google Scholar 

  10. IARC. Some nanomaterials and some fibres, vol 111. 2017. http://monographs.iarc.fr/ENG/Monographs/vol111/mono111.pdf. Accessed 30 Nov 2018.

  11. Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, et al. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 2016;13(1):53. https://doi.org/10.1186/s12989-016-0164-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci. 2009;110(2):442–8. https://doi.org/10.1093/toxsci/kfp100.

    Article  CAS  PubMed  Google Scholar 

  13. Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, et al. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol. 2014;11:59. https://doi.org/10.1186/s12989-014-0059-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzui M, Futakuchi M, Fukamachi K, Numano T, Abdelgied M, Takahashi S, et al. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci. 2016;107(7):924–35. https://doi.org/10.1111/cas.12954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pott F. Detection of mineral fibre carcinogenicity with the intraperitoneal test—recent results and their validity. Ann Occup Hyg. 1995;39(5):771–9.

    Article  CAS  PubMed  Google Scholar 

  16. Pott F, Roller M, Ziem U, Reiffer FJ, Bellmann B, Rosenbruch M, et al. Carcinogenicity studies on natural and man-made fibres with the intraperitoneal test in rats. IARC Sci Publ. 1989;90:173–9.

    Google Scholar 

  17. Roller M, Pott F, Kamino K, Althoff GH, Bellmann B. Results of current intraperitoneal carcinogenicity studies with mineral and vitreous fibres. Exp Toxicol Pathol. 1996;48(1):3–12. https://doi.org/10.1016/S0940-2993(96)80084-4.

    Article  CAS  PubMed  Google Scholar 

  18. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 2009;4(11):747–51. https://doi.org/10.1038/nnano.2009.305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. PennCentuury. Information archive. 2018. http://penncentury.com/products/liquid-aerosol-devices/microsprayer-ia-1b/. Accessed 30 Nov 2018.

  20. Xu J, Futakuchi M, Shimizu H, Alexander DB, Yanagihara K, Fukamachi K, et al. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci. 2012;103(12):2045–50. https://doi.org/10.1111/cas.12005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, et al. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci. 2014;105(7):763–9. https://doi.org/10.1111/cas.12437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdelgied M, El-Gazzar AM, Alexander DB, Alexander WT, Numano T, Iigou M, et al. Potassium octatitanate fibers induce persistent lung and pleural injury and are possibly carcinogenic in male Fischer 344 rats. Cancer Sci. 2018;109(7):2164–77. https://doi.org/10.1111/cas.13643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El-Gazzar AM, Abdelgied M, Alexander DB, Alexander WT, Numano T, Iigo M, et al. Comparative pulmonary toxicity of a DWCNT and MWCNT-7 in rats. Arch Toxicol. 2019;93:49–59.

    Article  CAS  PubMed  Google Scholar 

  24. Xu J, Futakuchi M, Alexander DB, Fukamachi K, Numano T, Suzui M, et al. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles. Arch Toxicol. 2014;88(1):65–75. https://doi.org/10.1007/s00204-013-1086-5.

    Article  CAS  PubMed  Google Scholar 

  25. Liao D, Wang Q, He J, Alexander DB, Abdelgied M, El-Gazzar AM, et al. Persistent pleural lesions and inflammation by pulmonary exposure of multiwalled carbon nanotubes. Chem Res Toxicol. 2018;31(10):1025–31. https://doi.org/10.1021/acs.chemrestox.8b00067.

    Article  CAS  PubMed  Google Scholar 

  26. Boutin C, Dumortier P, Rey F, Viallat JR, De Vuyst P. Black spots concentrate oncogenic asbestos fibers in the parietal pleura. Thoracoscopic and mineralogic study. Am J Respir Crit Care Med. 1996;153(1):444–9. https://doi.org/10.1164/ajrccm.153.1.8542156.

    Article  CAS  PubMed  Google Scholar 

  27. Carbone M, Ly BH, Dodson RF, Pagano I, Morris PT, Dogan UA, et al. Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol. 2012;227(1):44–58. https://doi.org/10.1002/jcp.22724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oberdorster G, Castranova V, Asgharian B, Sayre P. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J Toxicol Environ Health B Crit Rev. 2015;18(3–4):121–212. https://doi.org/10.1080/10937404.2015.1051611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. https://doi.org/10.1038/nature01322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okada F, Fujii J. Molecular mechanisms of inflammation-induced carcinogenesis. J Clin Biochem Nutr. 2006;39(3):103–13.

    Article  CAS  Google Scholar 

  31. Topinka J, Loli P, Georgiadis P, Dusinska M, Hurbankova M, Kovacikova Z, et al. Mutagenesis by asbestos in the lung of lambda-lacI transgenic rats. Mutat Res. 2004;553(1–2):67–78. https://doi.org/10.1016/j.mrfmmm.2004.06.023.

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Testa JR, Carbone M. Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr Treat Options Oncol. 2008;9(2–3):147–57. https://doi.org/10.1007/s11864-008-0067-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Tsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuda, H., Alexander, D.B. (2019). Development of Intratracheal Intrapulmonary Spraying (TIPS) Administration as a Feasible Assay Method for Testing the Toxicity and Carcinogenic Potential of Multiwall Carbon Nanotubes. In: Takebayashi, T., Landsiedel, R., Gamo, M. (eds) In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8433-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8433-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8432-5

  • Online ISBN: 978-981-13-8433-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics