Skip to main content

A Multi-resolution Design Methodology Based on Discrete Models

  • Conference paper
  • First Online:
Book cover Computer-Aided Architectural Design. "Hello, Culture" (CAAD Futures 2019)

Abstract

The use of programming languages in design opens up unexplored and previously unworkable territories, mainly, in conventional architectural practice. In the 1990s, languages of continuity, smoothness and seamlessness dominated the architectural inquiry with the CNC milling machine as its manufacturing tool. Today’s computational design and fabrication technology look at languages of synthesis of fragments or particles, with the 3D printer as its fabrication archetype. Fundamental to this idea is the concept of resolution–the amount of information stored at any localized region. Construction of a shape is then based on multiple regions of resolution. This paper explores a novel design methodology that takes this concept of resolutions on discrete elements as a design driver for architectural practice. This research has been tested primarily through additive manufacturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharp, J.V., Thompson, D.R.: Method and apparatus for increasing image resolution (1971)

    Google Scholar 

  2. Dillenburger, B., Hansmeyer, M.: The resolution of architecture in the digital age. Commun. Comput. Inf. Sci. 369, 347–357 (2013). https://doi.org/10.1007/978-3-642-38974-0_33

    Article  Google Scholar 

  3. Oxman, R.: Educating the designerly thinker. Des. Stud. 20, 105–122 (1999). https://doi.org/10.1016/S0142-694X(98)00029-5

    Article  Google Scholar 

  4. Carpo, M.: The Second Digital Turn: Design Beyond Intelligence. MIT Press, Cambridge (2017)

    Book  Google Scholar 

  5. Cardoso, D.: Builders of the Vision, p. 208 (2012)

    Google Scholar 

  6. Schumacher, P.: Parametricism: a new global style for architecture and urban design. Archit. Des. 79, 14–23 (2009). https://doi.org/10.1002/ad.912

    Article  Google Scholar 

  7. Carpo, M.: Excessive resolution: from digital streamlining to computational complexity. Archit. Des. 86, 78–83 (2016). https://doi.org/10.1002/ad.2114

    Article  Google Scholar 

  8. Garcia, M.J.: A generalized approach to non-layered fused filament fabrication. In: ACADIA 2017 Disciplines & Disruption, pp. 562–571 (2017)

    Google Scholar 

  9. Retsin, G., Jiménez García, M.: Discrete computational methods for robotic additive manufacturing. In: Fabricate 2017, pp. 178–184 (2017). https://doi.org/10.14324/111.9781787350014

  10. Sanchez, J., Andrasek, A.: Bloom. In: Fabricate 2014, DGO-Digi, pp. 98–103. UCL Press (2017)

    Google Scholar 

  11. Yagel, R., Cohen, D., Kaufman, A., et al.: Volume graphics. Computer (Long Beach Calif) 26, 51–64 (1993). https://doi.org/10.1109/MC.1993.274942

  12. Wu, R., Peng, H., Guimbretière, F., Marschner, S.: Printing arbitrary meshes with a 5DOF wireframe printer. ACM Trans. Graph. 35, 1–9 (2016). https://doi.org/10.1145/2897824.2925966

    Article  Google Scholar 

  13. Mueller, S., Im, S., Gurevich, S., et al.: WirePrint. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology - UIST 2014, pp. 273–280. ACM Press, New York (2014)

    Google Scholar 

  14. Reynolds, D., Tam, K.-M.M., Otani, R., Poulsen, E.: Equivalent material modelling of complex additive manufactured conformal lattices. In: Proceedings of the IASS Annual Symposium 2017. International Association for Shell and Spatial Structures (IASS), Hamburg, pp. 1–10 (2017)

    Google Scholar 

  15. Pasquarelli, G., Sharples, W., Sharples, C., et al.: Additive manufacturing revolutionizes lightweight gridshells. In: Proceedings of the IASS Annual Symposium 2017. International Association for Shell and Spatial Structures (IASS), Hamburg (2017)

    Google Scholar 

  16. Cheung, K.C.: Digital Cellular Solids: Reconfigurable composite materials. Massachusetts Institute of Technology (2012)

    Google Scholar 

  17. Gibson, L., Ashby, M.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  18. Willmann, J., Gramazio, F., Kohler, M., Langenberg, S.: Digital by material. In: Brell-Çokcan, S., Braumann, J. (eds.) Rob | Arch 2012, pp. 12–27. Springer, Vienna (2013). https://doi.org/10.1007/978-3-7091-1465-0_2

    Chapter  Google Scholar 

  19. Feng, J., Fu, J., Shang, C., et al.: Porous scaffold design by solid T-splines and triply periodic minimal surfaces. Comput. Methods Appl. Mech. Eng. 336, 333–352 (2018). https://doi.org/10.1016/j.cma.2018.03.007

    Article  MathSciNet  Google Scholar 

  20. Wang, S., Zhou, L., Luo, Z., et al.: Lightweight of artificial bone models utilizing porous structures and 3D printing. Int. J. Perform. Eng. 13, 633–642 (2017). https://doi.org/10.23940/ijpe.17.05.p8.633642

    Article  Google Scholar 

  21. Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32, 7741–7754 (2011). https://doi.org/10.1016/j.biomaterials.2011.07.019

    Article  Google Scholar 

  22. Gibson, L.J.: The mechanical behaviour of cancellous bone. J. Biomech. 18, 317–328 (1985). https://doi.org/10.1016/0021-9290(85)90287-8

    Article  Google Scholar 

  23. Liebschner, M., Wettergreen, M.: Optimization of bone scaffold engineering for load bearing applications. In: Topics in Tissue Engineering Bone II, Part II, vol. 1, chap. 6, pp. 1–39 (2003)

    Google Scholar 

  24. Oxman, N.: Virtual and physical prototyping variable property rapid prototyping. 6, 3–31 (2011). https://doi.org/10.1080/17452759.2011.558588

    Article  Google Scholar 

  25. Fleck, N.A., Deshpande, V.S., Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2495–2516 (2010). https://doi.org/10.1098/rspa.2010.0215

    Article  Google Scholar 

  26. Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19, 129–147 (1982). https://doi.org/10.1016/0146-664X(82)90104-6

    Article  Google Scholar 

  27. Liu, S., Li, Y., Li, N.: A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures. Mater. Des. 137, 235–244 (2018). https://doi.org/10.1016/j.matdes.2017.10.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following organizations that funded this research; The Frank Ratchye Fund for Art @ the Frontier (FRFAF), Consejo Social de la Universidad Politécnica de Madrid and the National Council of Science and Technology of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ladron de Guevara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ladron de Guevara, M., Borunda, L., Krishnamurti, R. (2019). A Multi-resolution Design Methodology Based on Discrete Models. In: Lee, JH. (eds) Computer-Aided Architectural Design. "Hello, Culture". CAAD Futures 2019. Communications in Computer and Information Science, vol 1028. Springer, Singapore. https://doi.org/10.1007/978-981-13-8410-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8410-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8409-7

  • Online ISBN: 978-981-13-8410-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics