Skip to main content

Effect of Metallic Strip Deposition Within the Source Dielectric with Applied Double Metallic Drain for Enhanced DC/RF Behavior of Charge Plasma TFET for Low-Power IOT Applications

  • Conference paper
  • First Online:
  • 1148 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 141))

Abstract

Wide tunneling barrier is always a hurdle to achieve acceptable electrical behavior for charge plasma TFET. Poor tunneling rate of charge carriers results in the degraded switching speed of the charge plasma TFET for low-power analog applications. In this concern, deposition of a thin metallic strip within the dielectric at channel/source junction enhances the DC characteristics like threshold voltage, subthreshold swing, and ON current of the device. Simultaneously, double metallic drain technique employed at drain side reduces ambipolar (negative conduction) nature of device. This article consists of a comparative analysis of conventional charge plasma TFET with modified structure. Inverter implementation of conventional and modified structures is also performed for the adaptability of devices for low-power IoT applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs? IEEE Trans. Electron Devices 56(3), 456–465 (2007)

    Article  Google Scholar 

  2. Jhaveri, R., Nagavarapu, V., Woo, J.C.S.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011)

    Article  Google Scholar 

  3. Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  Google Scholar 

  4. Colinge, J.-P.: FinFETs and Other Multi-gate Transistors. Springer, New York (2008)

    Book  Google Scholar 

  5. Aslam, M., Yadav, S., Soni, D., Sharma, D.: A new design approach for enhancement of DC/RF performance with improved ambipolar conduction of dopingless TFET. Superlattices Microstruct. 112, 86–96 (2017)

    Google Scholar 

  6. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)

    Article  Google Scholar 

  7. Avci, U.E., Morris, D.H., Young, I.A.: Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3(3), 88–95 (2015)

    Article  Google Scholar 

  8. Soni, D., Sharma, D., Aslam, M., Yadav, S.: A novel approach for the improvement of electrostatic behaviour of physically doped TFET by using plasma formation and shortening of gate electrode with hetero gate dielectric. Appl. Phys. A 124, 306 (2018)

    Google Scholar 

  9. Yadav, S., Sharma, D., Soni, D., Aslam, M.: Controlling ambipolarity with improved RF performance by drain/gate work function engineering and using high k dielectric material in electrically doped TFET: proposal and optimization. J. Comput. Electron. 16, 721–731 (2017)

    Google Scholar 

  10. Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)

    Google Scholar 

  11. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/Dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  12. Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)

    Article  Google Scholar 

  13. Bashir, F., Loan, S.A., Rafat, M., Alamoud, M.R.M., Abbasi, S.A.: A high performance gate engineered charge plasma based tunnel field effect transistor. J. Comput. Electron. 14, 477–485 (2015)

    Article  Google Scholar 

  14. Vijayvargiya, V., Vishvakarma, S.K.: Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nanotechnol. 13(5), 974–981 (2014)

    Article  Google Scholar 

  15. Raad, B.R., Tirkey, S., Sharma, D., Kondekar, P.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017)

    Article  Google Scholar 

  16. Aslam, M., Sharma, D., Yadav, S., Soni, D., Bajaj, V.: A new design approach for enhancement of DC/RF characteristics with improved ambipolar conduction of charge plasma TFET: proposal, and optimization. Appl. Phys. A 124, 342 (2018)

    Article  Google Scholar 

  17. ATLAS Device Simulation Software: Silvaco Int. Santa Clara, CA, USA (2014)

    Google Scholar 

  18. Yang, Y., Tong, X., Yang, L.T., Guo, P.F., Fan, L., Yeo, Y.C.: Tunneling field-effect transistor: capacitance components and modeling. IEEE Electron Device Lett. 31(7), 752–754 (2010)

    Google Scholar 

  19. Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel fet for improved device reliability. IEEE Trans. Device Mater. Reliab. 16(2), 227–234 (2016)

    Article  Google Scholar 

  20. Chen, Y.N., Fan, M.L., Hu, V.P.H., Su, P., Chuang, C.T.: Design and analysis of robust tunneling FET SRAM. IEEE Trans. Electron Devices 60(3), 1092–1098 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Aslam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aslam, M., Sharma, D., Soni, D., Yadav, S. (2020). Effect of Metallic Strip Deposition Within the Source Dielectric with Applied Double Metallic Drain for Enhanced DC/RF Behavior of Charge Plasma TFET for Low-Power IOT Applications. In: Somani, A.K., Shekhawat, R.S., Mundra, A., Srivastava, S., Verma, V.K. (eds) Smart Systems and IoT: Innovations in Computing. Smart Innovation, Systems and Technologies, vol 141. Springer, Singapore. https://doi.org/10.1007/978-981-13-8406-6_18

Download citation

Publish with us

Policies and ethics