Skip to main content

2,4-Diacetylphloroglucinol: A Novel Biotech Bioactive Compound for Agriculture

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Soil-borne phytopathogens are responsible for 30% loss of crop productivity and difficult to control. Strategies including crop rotation, use of chemical pesticides and even breeding and genetic engineering efforts for resistant plant varieties demonstrate limited potency to control root diseases of the agricultural plants. Applications of chemical fungicides to crop plant arrest fungal pathogen to some extent but impart acute and chronic toxicity to plants and interrupt biogeochemical cycles. The synthetic chemical fertilizers and pesticides are widely used in the last two to three decades, and the biological control relied on use of rhizobacteria or their bioactive metabolites to suppress the pathogen or pest load. Now, biological control proved beneficial to improve food security and livelihood, reduce contamination of soil and crops from pesticides and eventually increase biodiversity. The rhizobacteria are eco-friendly, stimulate the plant growth factors, provide nutrition for healthy growth of plant and reduce the incidence of crop diseases. The effective colonization of the rhizosphere and secretion of antibiotics by rhizobacteria determine biocontrol activity. Plant-growth-promoting rhizobacteria (PGPR) produce secondary metabolites such as pyoluteorin, pyrrolnitrin, phenazine, 2,4-diacetyl phloroglucinol (DAPG), etc. Of these, DAPG, a novel bioactive metabolite of the polyketide pathway, is of particular significance, because of (i) broad-spectrum effect against plant viruses, phytopathogenic bacteria and fungi for root diseases of dicots as well as monocots such as cucumber, maize, pea, tobacco, tomato, wheat, oat, banana, cotton, sugar beet, rice, etc. and (ii) its production by the native rhizospheric PGP fluorescent Pseudomonas spp. In addition, DAPG has also shown anti-helminthic, antiviral, and anti-protozoal properties as well as anticancer activity with pharmaceutical applications. This article mainly focuses on the laboratory to industry route for DAPG production with the aim to understand microbial DAPG biosynthesis and production for sustainable agriculture purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Morrissey JP, Marquez PC, Sheehan MM, Delany IR, O’Gara F (2002) Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol 184:3008–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achkar J, Xian M, Zhao H, Frost JW (2005) Biosynthesis of phloroglucinol. J Am Chem Soc 127:5332–5333

    Article  CAS  PubMed  Google Scholar 

  • Afsharmanesh H, Ahmadzadeh M, Javan-Nikkhah M, Behboudi K (2010) Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. J Plant Pathol 92:187–194

    CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Burlington, pp 79–103

    Google Scholar 

  • Almario J, Bruto M, Vacheron J, Prigent-Combaret C, Moënne-Loccoz Y, Muller D (2017) Distribution of 2, 4-diacetylphloroglucinol biosynthetic genes among the Pseudomonas spp. reveals unexpected polyphyletism. Front Microbiol 8:1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayyadurai N, Naik RP, Rao SM, Kumar SR, Samrat SK, Manohar M, Sakthivel N (2006) Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J Appl Microbiol 100:926–937

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bajsa N, Morel MA, Braña V, Castro-Sowinski S (2013) The effect of agricultural practices on resident soil microbial communities: focus on biocontrol and biofertilization. Mol Microb Ecol Rhizosphere 2:687–700

    Article  Google Scholar 

  • Bakker PA, Glandorf DC, Viebahn M, Ouwens TW, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek 81:617–624

    Article  CAS  PubMed  Google Scholar 

  • Bakker PA, Pieterse CM, Van Loon L (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bonsall RF, Weller DM, Thomashow LS (1997) Quantification of 2, 4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63:951–955

    Google Scholar 

  • Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2, 4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72:418–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, Gardener BBM, Coenen C (2008) 2, 4-Diacetylphloroglucinol alters plant root development. Mol Plant-Microbe Interact 21:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Brucker RM, Baylor CM, Walters RL, Lauer A, Harris RN, Minbiole KP (2008) The identification of 2, 4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus. J Chem Ecol 34:39–43

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Jiang X, Zhang R, Xian M (2011) Improved phloroglucinol production by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 91:1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Chaubey S, Kotak M, Archana G (2015) New method for isolation of plant probiotic fluorescent Pseudomonad and characterization for 2, 4-Diacetylphluoroglucinol production under different carbon sources and phosphate levels. J Plant Pathol Microbiol 6:253

    Google Scholar 

  • Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2, 4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant-Microbe Interact 24:271–284

    Article  CAS  PubMed  Google Scholar 

  • Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier MA, Rohr R, Comte G, Moënne-Loccoz Y, Prigent-Combaret C (2011) The role of the antimicrobial compound 2, 4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology 157:1694–1705

    Article  CAS  PubMed  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2, 4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:95–106

    Article  CAS  Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125

    Article  Google Scholar 

  • Dairi T, Kuzuyama T, Nishiyama M, Fujii I (2011) Convergent strategies in biosynthesis. Nat Prod Rep 28:1054–1086

    Article  CAS  PubMed  Google Scholar 

  • Davati N, Najafi MBH (2013) Overproduction strategies for microbial secondary metabolites: a review. Int J Life Sci Pharma Res 3:23–37

    Google Scholar 

  • De Leij FA, Dixon-Hardy JE, Lynch JM (2002) Effect of 2, 4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by rhizobium. Biol Fertil Soils 35:114–121

    Article  CAS  Google Scholar 

  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2, 4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • Delany I, Sheehan MM, Fenton A, Bardin S, Aarons S, O’Gara F (2000) Regulation of production of the antifungal metabolite 2, 4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146:537–546

    Article  CAS  PubMed  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Dubuis C, Keel C, Haas (2007) Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol 119:311–328

    Article  Google Scholar 

  • Duffy BK, Défago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duffy BK, Défago G (2000) Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 66:3142–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer WH (2009) Influence of earthworm activity on soil microbes and soilborne diseases of vegetables. Plant Dis 93:175–179

    Article  PubMed  Google Scholar 

  • Fenton AM, Stephens PM, Crowley J, O’callaghan M, O’gara F (1992) Exploitation of gene (s) involved in 2, 4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58:3873–3878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando WD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Food and Agriculture Organization of The United Nations (2017a) Averting risks to the food chain: a compendium of proven emergency prevention methods and tools. ISBN:978-92-5-109539-3

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2017b) The future of food and agriculture- trends and challenges. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Frapolli M, Pothier JF, Défago G, Moënne-Loccoz Y (2012) Evolutionary history of synthesis pathway genes for phloroglucinol and cyanide antimicrobials in plant-associated fluorescent pseudomonads. Mol Phylogenet Evol 63:877–890

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Wang P, Tang Y (2010) Engineered polyketide biosynthesis and biocatalysis in Escherichia coli. Appl Microbiol Biotechnol 88:1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girlanda M, Perotto S, Moenne-Loccoz Y, Bergero R, Lazzari A, Defago G, Bonfante P, Luppi AM (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67:1851–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleeson O, O’Gara F, Morrissey JP (2010) The Pseudomonas fluorescens secondary metabolite 2, 4 diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 97:261–273

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JB, Fernandez FJ, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Indian J Biotechnol 2:322–333

    Google Scholar 

  • Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez RM, Granados-Ramírez G, Zarraga R, Wrobel K, Barona-Gómez F, Flores-Cotera LB (2017) Phylogenomics of 2, 4-Diacetylphloroglucinol-producing pseudomonas and novel antiglycation endophytes from Piper auritum. J Nat Prod 80:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan MN, Afghan S, ul Hassan Z, Hafeez FY (2014) Biopesticide activity of sugarcane associated rhizobacteria: Ochrobactrum intermedium strain NH-5 and Stenotrophomonas maltophilia strain NH-300 against red rot under field conditions. Phytopathol Mediterr 53:27–37

    Google Scholar 

  • Hawkins NJ, Fraaije BA (2018) Fitness penalties in the evolution of fungicide resistance. Annu Rev Phytopathol 56:339–360

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Saitou H, Mori T, Matano I, Sugisaki H, Maruyama K (2012) Molecular and catalytic properties of monoacetylphloroglucinol acetyltransferase from Pseudomonas sp. YGJ3. Biosci Biotechnol Biochem 76:559–566

    Article  CAS  PubMed  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Heeb S, Valverde C, Gigot-Bonnefoy C, Haas D (2005) Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 243:251–258

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868

    Article  Google Scholar 

  • Hol WH, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta (BBA)-Proteins Proteomics 1703:11–19

    Article  CAS  Google Scholar 

  • Hultberg M, Alsanius B (2008) Influence of nitrogen source on 2, 4-diacetylphloroglucinol production by the biocontrol strain Pf-5. Open Microbiol J 2:74

    Article  CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Fukushi Y (2010) Growth inhibition and excessive branching in Aphanomyces cochlioides induced by 2, 4-diacetylphloroglucinol is linked to disruption of filamentous actin cytoskeleton in the hyphae. World J Microbiol Biotechnol 26:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Von Tiedemann A (2011) 2, 4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of Peronosporomycete zoospores. World J Microbiol Biotechnol 27:2071–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isnansetyo A, Cui L, Hiramatsu K, Kamei Y (2003) Antibacterial activity of 2, 4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int J Antimicrob Agents 22:545–547

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, Hartung W, Jeschke DW, Davies WJ, Dodd IC (2012) Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 63:6421–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Li GX, Yu XH, Zheng SJ (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jousset A, Bonkowski M (2010) The model predator Acanthamoeba castellanii induces the production of 2, 4, DAPG by the biocontrol strain Pseudomonas fluorescens Q2-87. Soil Biol Biochem 42:1647–1649

    Article  CAS  Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei Y, Isnansetyo A (2003) Lysis of methicillin-resistant Staphylococcus aureus by 2, 4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int J Antimicrob Agents 21:71–74

    Article  CAS  PubMed  Google Scholar 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag Sci Formerly Pestic Sci 66:555–564

    Article  CAS  Google Scholar 

  • Katar’yan BT, Torgashova GG (1976) Spectrum of herbicidal activity of 2, 4-diacetylphloroglucinol. Dokl Akad Nauk Armyanskoi SSR 63:109–112

    Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner T, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of bacterial secondary metabolites 2, 4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Keel C, Weller DM, Natsch A, Défago G, Cook RJ, Thomashow LS (1996) Conservation of the 2, 4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62:552–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011) Phloroglucinol mediates cross-talk between the pyoluteorin and 2, 4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81:395–414

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 14:1096–1104

    Article  CAS  PubMed  Google Scholar 

  • Kwak YS, Weller DM (2013) Take-all of wheat and natural disease suppression: a review. Plant Pathol J 29:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak YS, Bakker PA, Glandorf DC, Rice JT, Paulitz TC, Weller DM (2009) Diversity, virulence, and 2, 4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington State. Phytopathology 99:472–479

    Article  CAS  PubMed  Google Scholar 

  • Kwak YS, Han S, Thomashow LS, Rice JT, Paulitz TC, Kim D, Weller DM (2011) Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2, 4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl Environ Microbiol 77:1770–1776

    Article  CAS  PubMed  Google Scholar 

  • Kwak YS, Bonsall RF, Okubara PA, Paulitz TC, Thomashow LS, Weller DM (2012) Factors impacting the activity of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biol Biochem 54:48–56

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lutz MP, Wenger S, Maurhofer M, Défago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48:447–455

    Article  CAS  PubMed  Google Scholar 

  • Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O’Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci 102:17454–17459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matano I, Tsunekawa M, Shimizu S, Tanaka I, Mitsukura K, Maruyama K (2010) The chloride ion is an environmental factor affecting the biosynthesis of pyoluteorin and 2, 4-diacetylphloroglucinol in Pseudomonas sp. YGJ3. Biosci Biotechnol Biochem 74:427–429

    Article  CAS  PubMed  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Défago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathol 44:40–50

    Article  Google Scholar 

  • Maurhofer M, Baehler E, Notz R, Martinez V, Keel C (2004) Cross talk between 2, 4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol 70:1990–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Meyer SL, Halbrendt JM, Carta LK, Skantar AM, Liu T, Abdelnabby HM, Vinyard BT (2009) Toxicity of 2, 4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41:274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meziane H, Van Der Sluis I, Van Loon LC, Höfte M, Bakker PA (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Miller GT (2004) Sustaining the earth, vol 9. Thompson Learning, Pacific Grove, pp 211–216

    Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moënne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170

    Article  CAS  Google Scholar 

  • Mishra J, Arora NK (2017) Secondary metabolites of fluorescent pseudomonads in biocontrol of phyto-pathogens for sustainable agriculture. Appl Soil Ecol 125:35–45

    Article  Google Scholar 

  • Moynihan JA, Morrissey JP, Coppoolse ER, Stiekema WJ, O’Gara F, Boyd EF (2009) Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens. Appl Environ Microbiol 75:2122–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller T, Behrendt U, Ruppel S, von der Waydbrink G, Müller ME (2016) Fluorescent pseudomonads in the phyllosphere of wheat: potential antagonists against fungal phytopathogens. Curr Microbiol 72:383–389

    Article  PubMed  CAS  Google Scholar 

  • Nagel K, Schneemann I, Kajahn I, Labes A, Wiese J, Imhoff JF (2012) Beneficial effects of 2, 4-diacetylphloroglucinol-producing pseudomonads on the marine alga Saccharina latissima. Aquat Microb Ecol 67:239–249

    Article  Google Scholar 

  • Nakata K, Yoshimoto A, Yamada Y (1999) Promotion of antibiotic production by high ethanol, high NaCl concentration, or heat shock in Pseudomonas fluorescens S272. Biosci Biotechnol Biochem 63:293–297

    Article  CAS  PubMed  Google Scholar 

  • Natsch A, Keel C, Hebecker N, Laasik E, Défago G (1998) Impact of Pseudomonas fluorescens strain CHA0 and a derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots. FEMS Microbiol Ecol 27:365–380

    Article  CAS  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Management. https://doi.org/10.1094/CM-2004-0301-05-RV

    Article  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2, 4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  CAS  PubMed  Google Scholar 

  • Notz R, Maurhofer M, Dubach H, Haas D, Défago G (2002) Fusaric acid-producing strains of Fusarium oxysporum alter 2, 4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994) Production of 2, 4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40:1064–1066

    Article  CAS  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181(7):2166–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okubara PA, Bonsall RF (2008) Accumulation of Pseudomonas-derived 2, 4-diacetylphloroglucinol on wheat seedling roots is influenced by host cultivar. Biol Control 46:322–331

    Article  CAS  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr 2:1117–1142

    Google Scholar 

  • Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392

    Article  CAS  PubMed  Google Scholar 

  • Pedersen AL, Nybroe O, Winding A, Ekelund F, Bjørnlund L (2009) Bacterial feeders, the nematode Caenorhabditis elegans and the flagellate Cercomonas longicauda, have different effects on outcome of competition among the Pseudomonas biocontrol strains CHA0 and DSS73. Microb Ecol 57:501–509

    Article  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard C, Bosco M (2003) Genetic diversity of phlD gene from 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere. FEMS Microbiol Lett 219:167–172

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Bosco M (2005) Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations. FEMS Microbiol Ecol 53:349–357

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2, 4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pimentel D (1997) Techniques for reducing pesticide use: economic and environmental benefits. Wiley, New York

    Google Scholar 

  • Primrose SB (1976) Formation of ethylene by Escherichia coli. Microbiology 95:159–165

    CAS  Google Scholar 

  • Quecine MC, Kidarsa TA, Goebel NC, Shaffer BT, Henkels MD, Zabriskie TM, Loper JE (2016) An inter-species signaling system mediated by fusaric acid has parallel effects on antifungal metabolite production by Pseudomonas protegens Pf-5 and antibiosis of Fusarium spp. Appl Environ Microbiol. AEM-02574 82:1372–1382

    Article  CAS  PubMed Central  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2, 4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537

    Article  CAS  PubMed  Google Scholar 

  • Ramadasappa S, Rai AK, Jaat RS, Singh A, Rai R (2012) Isolation and screening of phlD+ plant growth promoting rhizobacteria antagonistic to Ralstonia solanacearum. World J Microbiol Biotechnol 28:1681–1690

    Article  PubMed  CAS  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Ramette A (2002) Diversity of biocontrol fluorescent pseudomonads producing 2, 4-diacetylphloroglucinol and hydrogen cyanide in disease suppressive soils. Doctoral dissertation, ETH Zurich

    Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2001) Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2, 4-diacetylphloroglucinol and comparison of PhlD with plant polyketide synthases. Mol Plant-Microbe Interact 14:639–652

    Article  CAS  PubMed  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2003) Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiol Ecol 44:35–43

    Article  CAS  PubMed  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381

    Article  CAS  PubMed  Google Scholar 

  • Reddy TK, Khudiakov I, Borovkov AV (1969) Pseudomonas fluorescens strain 26-o – producer of phytotoxic substances. Mikrobiologiia 38:909

    CAS  PubMed  Google Scholar 

  • Reddy KRN, Choudary KA, Reddy MS (2007) Antifungal metabolites of Pseudomonas fluorescens isolated from rhizosphere of rice crop. J Mycol Plant Pathol 37:280–284

    CAS  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan K, Sarma MVRK, Roesti AS, Prakash A, Johri BN, Aragno M, Bisaria VS, Sahai V (2010) Cell growth and metabolites produced by fluorescent pseudomonad R62 in modified chemically defined medium. World Acad Sci Eng Technol 67:867–871

    Google Scholar 

  • Saharan K, Sarma MVRK, Prakash A, Johri BN, Bisaria VS, Sahai V (2011) Shelf-life enhancement of bio-inoculant formulation by optimizing the trace metals ions in the culture medium for production of DAPG using fluorescent pseudomonad R62. Enzym Microb Technol 48:33–38

    Article  CAS  Google Scholar 

  • Saikia R, Varghese S, Singh BP, Arora DK (2009) Influence of mineral amendment on disease suppressive activity of Pseudomonas fluorescens to Fusarium wilt of chickpea. Microbiol Res 164:365–373

    Article  CAS  PubMed  Google Scholar 

  • Saikia R, Sarma RK, Yadav A, Bora TC (2011) Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere. Curr Microbiol 62:434–444

    Article  CAS  PubMed  Google Scholar 

  • Saravanan T, Muthusamy M (2006) Influence of Fusarium oxysporum f. sp. cubense (ef smith) Snyder and Hansen on 2, 4-diacetylphloroglucinol production by Pseudomonas fluorescens migula in banana rhizosphere. J Plant Prot Res 46:241–254

    Google Scholar 

  • Sarma MVRK, Saharan K, Kumar L, Gautam A, Kapoor A, Srivastava N, Sahai V, Bisaria VS (2010) Process optimization for enhanced production of cell biomass and metabolites of fluorescent pseudomonad R81. World Acad Sci Eng Technol 41:997–1001

    Google Scholar 

  • Sarma MVRK, Gautam A, Kumar L, Saharan K, Kapoor A, Shrivastava N, Sahai V, Bisaria VS (2013) Bioprocess strategies for mass multiplication of and metabolite synthesis by plant growth promoting pseudomonads for agronomical applications. Process Biochem 48:1418–1424

    Article  CAS  Google Scholar 

  • Sarniguet A, Kraus J, Henkels MD, Muehlchen AM, Loper JE (1995) The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci 92:12255–12259

    Google Scholar 

  • Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten A, Maksimova O, Cuesta-Arenas Y, Van Den Berg G, Raaijmakers JM (2008) Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2, 4-diacetylphloroglucinol. Environ Microbiol 10:1145–1157

    Article  CAS  PubMed  Google Scholar 

  • Sekar J, Prabavathy VR (2014) Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity. FEMS Microbiol Ecol 89:32–46

    Article  CAS  PubMed  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan P, Glennon JD, Crowley JJ, Donnelly DF, O’Gara F (1993) Liquid chromatographic assay of microbially derived phloroglucinol antibiotics for establishing the biosynthetic route to production, and the factors affecting their regulation. Anal Chim Acta 272:271–277

    Article  CAS  Google Scholar 

  • Shanthi AT, Vittal RR (2013) Biocontrol potentials of plant growth promoting rhizobacteria against Fusarium wilt disease of cucurbit. Int J Phytopathol 2:155–161

    Google Scholar 

  • Sharifi-Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1998) Biocontrol of soil-borne fungal plant diseases by 2, 4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur J Plant Pathol 104:631–643

    Article  CAS  Google Scholar 

  • Shirzad A, Fallahzadeh-Mamaghani V, Pazhouhandeh M (2012) Antagonistic potential of fluorescent pseudomonads and control of crown and root rot of cucumber caused by Phytophthora drechsleri. Plant Pathol J 28:1–9

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Singh IP, Bharate SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591

    Article  CAS  Google Scholar 

  • Song L, Barona-Gomez F, Corre C, Xiang L, Udwary DW, Austin MB, Noel JP, Moore BS, Challis GLJ (2006) Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128:14754–14755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Standing D, Banerjee S, Ignacio Rangel-Castro J, Jaspars M, Prosser JI, Killham K (2008) Novel screen for investigating in situ rhizosphere production of the antibiotic 2, 4-diacetylphloroglucinol by bacterial inocula. Commun Soil Sci Plant Anal 39:1720–1732

    Article  CAS  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads a taxonomic study. Microbiology 43:159–271

    CAS  Google Scholar 

  • Stolp H, Gadkari D (1981) Non-pathogenic members of the genus Pseudomonas. In: Starr MP, Stolp H, Truper HG, Ballows A, Shlegel HG (eds) The prokaryotes, A handbook on habitats, isolation and identification of bacteria, vol I. Springer, Berlin, pp 719–741

    Chapter  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Takakuwa T, Nagai M, Yoshii T (1990) Antiviral and antimicrobial activity of 2, 4-diacylphloroglucinols, 2-acylcyclohexane-1, 3-diones and 2-carboxamidocyclo-hexane-1, 3-diones. Agric Biol Chem 54:3061–3063

    CAS  Google Scholar 

  • Takeuchi K, Kiefer P, Reimmann C, Keel C, Dubuis C, Rolli J, Vorholt JA, Haas D (2009) Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J Biol Chem 284:34976–34985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada H (1981) The interaction of highly active uncouplers with mitochondria. Biochim Biophys Acta (BBA)-Rev Bioenerg 639:225–242

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller D (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. Plant-Microbe Interact 1:187–235

    Article  Google Scholar 

  • Troppens DM, Dmitriev RI, Papkovsky DB, O’Gara F, Morrissey JP (2013a) Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2, 4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 13:322–334

    Article  CAS  PubMed  Google Scholar 

  • Troppens DM, Chu M, Holcombe LJ, Gleeson O, O’Gara F, Read ND, Morrissey JP (2013b) The bacterial secondary metabolite 2, 4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genet Biol 56:135–146

    Article  CAS  PubMed  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potte S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 243–254

    Chapter  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Veena VK, Kennedy K, Lakshmi P, Krishna R, Sakthivel N (2016) Anti-leukemic, anti-lung, and anti-breast cancer potential of the microbial polyketide 2, 4-diacetylphloroglucinol (DAPG) and its interaction with the metastatic proteins than the antiapoptotic Bcl-2 proteins. Mol Cell Biochem 414:47–56

    Article  CAS  PubMed  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2, 4-diacetylphloroglucinol. Can J Microbiol 52:56–65

    Article  CAS  PubMed  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS (2013) Rhizosphere bacteria for biocontrol of bacterial blight and growth promotion of rice. Rice Sci 20:356–362

    Article  Google Scholar 

  • Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moënne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163

    Article  CAS  Google Scholar 

  • Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8:404–418

    Article  CAS  PubMed  Google Scholar 

  • Weissman KJ (2009) Introduction to polyketide biosynthesis. In: Abelson JN, Simon MI (eds) Methods in Enzymology. Academic, London, pp 3–16

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CMJ, Bakker PAHM, Van Loon LC (2004) Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens. Phytopathology 94:S108

    Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Philmus B, Chang JH, Loper JE (2017) Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. elife 6:22835

    Article  Google Scholar 

  • Yang F, Cao Y (2012) Biosynthesis of phloroglucinol compounds in microorganisms. Appl Microbiol Biotechnol 93:487–495

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Cang S, Matsufuji M, Nakata K, Nagamatsu Y, Yoshimoto A (1998) High production of pyoluteorin and 2, 4-diacetylphloroglucinol by Pseudomonas fluorescens S272 grown on ethanol as a sole carbon source. J Ferment Bioeng 86:559–563

    Article  CAS  Google Scholar 

  • Zha W, Rubin-Pitel SB, Zhao H (2006) Characterization of the substrate specificity of PhlD, a type III polyketide synthase from Pseudomonas fluorescens. J Biol Chem 281:32036–32047

    Article  CAS  PubMed  Google Scholar 

  • Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:92–198

    Article  CAS  Google Scholar 

  • Zhang W (2018) Global pesticide use: profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8:1

    Google Scholar 

  • Zhang W, Zhao Z, Zhang B, Wu XG, Ren ZG, Zhang LQ (2014) Post-transcriptional regulation of 2, 4-diacetylphloroglucinol production by GidA and TrmE in Pseudomonas fluorescens 2P24. Appl Environ Microbiol. AEM-00455 80:3972–3981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors RAK and NDD are grateful to the Department of Science and Technology, New Delhi, for providing WOS-A fellowship [SR/WOS-A/LS-1209/2014 (G)]. The authors also acknowledge DST-FIST and UGC-SAP for the infrastructural support to the host institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Dharmaji Dandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kankariya, R.A., Chaudhari, A.B., Gavit, P.M., Dandi, N.D. (2019). 2,4-Diacetylphloroglucinol: A Novel Biotech Bioactive Compound for Agriculture. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8391-5_16

Download citation

Publish with us

Policies and ethics