Skip to main content

Microbe-Mediated Reclamation of Contaminated Soils: Current Status and Future Perspectives

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Soils contaminated with salts, metal ions, and industrial pollutants pose drastic effects on plant growth. Different physical, chemical, and biological methods are being used for improving the health of such soils to make the agricultural practices more profitable. Recently, microbe-mediated reclamation of polluted soils is attracting the researchers, farmers, and other stakeholders due to unique advantages it has as compared to chemical approaches. Characterization of potential microbes having inherent capability to tolerate salts and metals and their application as soil reclamating agents not only result in improved soil health but also ensure the higher crop productivity. In contaminated soils, these microbes facilitate plant growth through nutrient mobilization, exopolysaccharide synthesis, phytohormone production, 1-aminocyclopropane-1-carboxylate deaminase activity, and siderophore production through their bioremediation potential. Moreover, salt- and metal-tolerant microbes confer resistance to plant against deleterious effects of salinity, metals, and other contaminants present in soils. This chapter encompasses a comprehensive review of inherent potential of microbial formulations for the reclamation of contaminated soils. Moreover, the mechanisms responsible for the uptake, chelation, transformation, immobilization, volatilization, translocation, precipitation, and solubilization of heavy metals and salts are presented in detail. This chapter also covers the microbe-mediated stress alleviation mechanisms in plants by activating the antioxidant, lowering the reactive oxygen species levels, minimizing ethylene concentration, and triggering some stress responsive genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7:636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abhilash P, Powell JR, Singh HB et al (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  PubMed  Google Scholar 

  • Abriouel H, Franz CM, Omar NB et al (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  PubMed  Google Scholar 

  • Adams M, Zhao F, McGrath S et al (2004) Predicting cadmium concentrations in wheat and barley grain using soil properties. J Environ Qual 33:532–541

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5:111–121

    Article  PubMed  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M et al. (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Dehli, pp 293–313

    Chapter  Google Scholar 

  • Akram MS, Shahid M, Tariq M, Azeem M, Javed T, Saleem S, Riaz S (2016) Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.). Front Microbiol 7

    Google Scholar 

  • Alami Y, Achouak W, Marol C et al (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Grover M et al (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Heavy metals in soils. Springer, New York, pp 11–50

    Chapter  Google Scholar 

  • Amato P, Tachibana M, Sparman M et al (2014) Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 101:31–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade S, Silveira A, Mazzafera P (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Sci Total Environ 408:5381–5391

    Article  CAS  PubMed  Google Scholar 

  • Arzanesh MH, Alikhani H, Khavazi K et al (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Azcón R, del Carmen Perálvarez M, Roldán A et al (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb Ecol 59:668–677

    Article  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Gutierrez Manero F (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Roskot N, Steidle A et al (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bogino PC, Oliva MM, Sorroche FG et al (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Chakraborty B, Dey P et al (2015) Role of microorganisms in alleviation of abiotic stresses for sustainable agriculture. In: Abiotic stresses in crop plants. CABI, Wallingford, pp 232–253

    Chapter  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34(1):33–41

    Article  Google Scholar 

  • Chen L, Cheng X, Cai J et al (2016) Multiple virus resistance using artificial trans-acting siRNAs. J Virol Methods 228:16–20

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M et al (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couillerot O et al (2011) The role of the antimicrobial compound 2, 4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology 157:1694–1705

    Article  CAS  PubMed  Google Scholar 

  • Cristaldi A, Conti GO, Jho EH et al (2017) Phytoremediation of contaminated soils by heavy metals and PAHs: a brief review. Environ Technol Innov 8:309–326

    Article  Google Scholar 

  • Cui D, Kong F, Liang B et al (2011) Decolorization of azo dyes in dual-chamber biocatalyzed electrolysis systems seeding with enriched inoculum. J Environ Anal Toxicol S 3:001

    Google Scholar 

  • Daei G, Ardekani M, Rejali F et al (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Defez R, Andreozzi A, Bianco C (2017) The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microb Ecol 74:441–452

    Article  CAS  PubMed  Google Scholar 

  • Dhole A, Shelat H, Panpatte D et al (2015) Biofertilizer formulation with absorbent polymers to surmount the drought stress. Pop Kheti 3(3):89–93

    Google Scholar 

  • Dimkpa C, Merten D, SvatoÅ¡ A et al (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dixit R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Elobeid M, Göbel C, Feussner I et al (2011) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623

    Article  CAS  PubMed  Google Scholar 

  • Frazier TP, Sun G, Burklew CE et al (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Liang F, Yu A et al (2010) Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere 78:614–619

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Mill sp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80:5–22

    Article  CAS  Google Scholar 

  • Geddes BA, Ryu M-H, Mus F et al (2015) Use of plant colonizing bacteria as chassis for transfer of N 2-fixation to cereals. Curr Opin Biotechnol 32:216–222

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J et al (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A et al (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35:1000–1012

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V et al (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214

    Article  CAS  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh L et al (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hamaoui B, Abbadi J, Burdman S et al (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Article  Google Scholar 

  • Jha Y, Subramanian R (2018) From interaction to gene induction: an eco-friendly mechanism of pgpr-mediated stress management in the plant. In: Plant microbiome: stress response. Springer, Singapore, pp 217–232

    Chapter  Google Scholar 

  • Karabay S (2008) Waste management in leather industry. DEÃœ Fen Bilimleri Enstitüsü, Buca, Turkey

    Google Scholar 

  • Kumar R, Shastri B (2017) Role of phosphate-solubilising microorganisms in: Sustainable Agricultural Development. In: Agro-environmental sustainability. Springer, Cham, pp 271–303

    Chapter  Google Scholar 

  • Li W-W, Yu H-Q, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  CAS  Google Scholar 

  • Li X, Zhang J, Gai J et al (2015) Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the T ibetan P lateau. Environ Microbiol 17:2841–2857

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li W, Song W et al (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  PubMed  Google Scholar 

  • Loehr R (2012) Agricultural waste management: problems, processes, and approaches. Elsevier, Amsterdam

    Google Scholar 

  • Machuca A, Milagres A (2003) Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177–181

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Manno E, Varrica D, Dongarra G (2006) Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmos Environ 40:5929–5941

    Article  CAS  Google Scholar 

  • Meffe R, de Bustamante I (2014) Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Sci Total Environ 481:280–295

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Zhang A, Wang F et al (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339

    PubMed  PubMed Central  Google Scholar 

  • Miransari M (2014) Plant growth promoting rhizobacteria. J Plant Nutr 37:2227–2235

    Article  CAS  Google Scholar 

  • Miransari M (2017) The interactions of soil microbes affecting stress alleviation in agroecosystems. In: Probiotics in agroecosystem. Springer, Singapore, pp 31–50

    Chapter  Google Scholar 

  • Mittal P, Kamle M, Sharma S et al. (2017) 22 Plant growth-promoting rhizobacteria (PGPR): mechanism, role in crop improvement and sustainable agriculture. Adv PGPR Res 386–397

    Google Scholar 

  • Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nagel R, Turrini PC, Nett RS et al (2017) An operon for production of bioactive gibberellin A4 phytohormone with wide distribution in the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. New Phytol 214:1260–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson F, Smith S, Alloway B et al (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219

    Article  CAS  PubMed  Google Scholar 

  • Niu Q-W, Shih-Shun L, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420

    Article  CAS  PubMed  Google Scholar 

  • Nogueira M, Nehls U, Hampp R et al (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284

    Article  CAS  Google Scholar 

  • Novo LA, Castro PM, Alvarenga P et al (2018) Plant growth–promoting rhizobacteria-assisted phytoremediation of mine soils. In: Bio-geotechnologies for mine site rehabilitation. Elsevier, Amsterdam, pp 281–295

    Chapter  Google Scholar 

  • Nunkaew T, Kantachote D, Nitoda T et al (2015) Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydr Polym 115:334–341

    Article  CAS  PubMed  Google Scholar 

  • Ortiz N, Armada E, Duque E et al (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Parida B, Chhibba I, Nayyar V (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98:113–119

    Article  CAS  Google Scholar 

  • Passari AK, Mishra VK, Leo VV et al (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73

    Article  CAS  PubMed  Google Scholar 

  • Patel JS, Singh A, Singh HB et al (2015) Plant genotype, microbial recruitment and nutritional security. Front Plant Sci 6:608

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Pishchik V, Vorobyev N, Chernyaeva I et al (2002) Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173–186

    Article  CAS  Google Scholar 

  • Qiu Q, Wang Y, Yang Z, Yuan J (2011) Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol 49(9):2260–2267

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M et al (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T et al (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Rasouli-Sadaghiani M, Hassani A, Barin M et al (2010) Effects of AM fungi on growth, essential oil production and nutrients uptake in basil. J Med Plant Res 4:2222–2228

    CAS  Google Scholar 

  • Rodriguez H, Vessely S, Shah S et al (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM et al (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruperao P et al (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol J 12:778–786

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA et al (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali S, Grover M et al (2009a) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601

    Google Scholar 

  • Sandhya V, Grover M, Reddy G et al (2009b) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sarwar N et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Shahid M, Hussain B, Riaz D et al (2017) Identification and partial characterization of potential probiotic lactic acid bacteria in freshwater Labeo rohita and Cirrhinus mrigala. Aquac Res 48:1688–1698

    Article  CAS  Google Scholar 

  • Shahid M, Javed MT, Mushtaq A, Akram MS, Mahmood F, Ahmed T, Noman M, Azeem M (2019) Microbe-mediated mitigation of cadmium toxicity in plants. In: Cadmium toxicity and tolerance in plants. Academic Press, pp 427–449

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1)

    Google Scholar 

  • Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He CY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Pandey VC, Singh D (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Sobariu DL et al (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134

    Article  CAS  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci 103:13997–14002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taktek S, Trépanier M, Servin PM et al (2015) Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem 90:1–9

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Methods in enzymology, vol 428. Elsevier, Amsterdam, pp 419–438

    Google Scholar 

  • Valentín L, Nousiainen A, Mikkonen A (2013) Introduction to organic contaminants in soil: concepts and risks. In: Emerging organic contaminants in sludges. Springer, Berlin, pp 1–29

    Google Scholar 

  • Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27:177–192

    Article  Google Scholar 

  • Vimala P, Lalithakumari D (2003) Characterization of exopolysaccharide (EPS) produced by Leuconostoc sp. V 41. Asian J Microbiol Biotechnol Environ Sci 5:161–165

    CAS  Google Scholar 

  • Wu Q-S, Xia R-X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Chen J, Shim H et al (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahid, M. et al. (2019). Microbe-Mediated Reclamation of Contaminated Soils: Current Status and Future Perspectives. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8391-5_10

Download citation

Publish with us

Policies and ethics