Skip to main content

Functional Diversity of Plant Growth-Promoting Rhizobacteria: Recent Progress and Future Prospects

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Plant root linked bacteria that live on the plant roots as ectophytes or endophytes and can directly boost plant development through augmenting nourishment absorption of nitrogen, phosphorus, and other important minerals or changing the level of phytohormones and indirectly by diminishing the harmful impact of different phytopathogens in the form of biological control and competition for colonization sites on plants are designated as plant growth-promoting rhizobacteria (PGPR). Therefore, the application of such PGPR in the form of single or mixed bioinoculants can reduce the reliance on synthetic fertilizers without decreasing the crop productivity. Despite their potential to enhance crop productivity and improve crop protection, PGPR still have to cover a long distance to compete as effective bioinoculants. Therefore, there is urgent need to learn the functional diversity of PGPR for sustainable crop production. Keeping in view the author attempted to review the recent progress associated with functional diversity of PGPR along with their mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Tripathi V, Edrisi SA et al (2016) Sustainability of crop production from polluted lands. Energy Ecol Environ 1(1):54–65

    Article  Google Scholar 

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Altaf MM et al (2016) Characterization of Paenibacillus durus (PNF16) a new isolate and its synergistic interaction with other isolated rhizobacteria in promoting growth and yield of chickpea. J Microbiol Biotechnol Food Sci 5(4):345–350

    Article  CAS  Google Scholar 

  • Alexandre G, Greer SE, Zhulin IB (2000) Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol 182(21):6042–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017a) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Alori ET, Dare MO, Babalola OO (2017b) Microbial inoculants for soil quality and plant fitness. In: Lichtfouse E (ed) Sustainable agriculture review. Springer, Berlin, pp 181–308

    Google Scholar 

  • Altaf MM (2016) In vitro screening for biofilm forming ability of rhizospheric bacteria and their plant growth promoting potential. Ph.D. thesis, Aligarh Muslim University

    Google Scholar 

  • Altaf MM, Ahmad I (2017) In vitro and in vivo biofilm formation by Azotobacter isolates and its relevance to rhizosphere colonization. Rhizosphere 3:138–142

    Article  Google Scholar 

  • Amara U, Khalid R, Hayat R (2015) Soil bacteria and phytohormones for sustainable crop production. In: Maheshwari D (ed) Bacterial metabolites in sustainable agroecosystem. Sustainable development and biodiversity. Springer, Cham, pp 87–103

    Chapter  Google Scholar 

  • Anand K, Kumari B, Mallick MA (2016) Phosphate solubilizing microbes: an effectiveand alternative approach as bio-fertilizers. Int J Pharm Sci 8(2):37–40

    CAS  Google Scholar 

  • Angus AA, Hirsch AM (2013) Biofilm Formation in the Rhizosphere: Multispecies Interactions and Implications for Plant Growth. In: De Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, New York, pp 703–712

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (1993) Microbial production of plant growth regulators. In: Metting FB Jr (ed) Soil microbial ecology. Marcel Dekker Inc., New York, pp 307–347

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (1998) Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:146–151

    Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: some recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Bach E, dos Santos SGD, de Carvalho FG et al (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149

    Article  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS et al (2017) Plant growth promoting rhizobacteria enhances wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514. https://doi.org/10.1111/ppl.12614

    Article  CAS  PubMed  Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA 110:E1621–E1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beneduzi A, Peres D, da Costa PB et al (2008) Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159(4):244–250

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Wiesner M, Brock AK (2015) K. radicincitans: a beneficial bacteria that promotes radish growth under field conditions. Agron Sustain Dev 35:1521–1528

    Article  Google Scholar 

  • Bhardwaj D, Ansari MW, Saho RK (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Fact 13(66):1–10

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bogino P, Abod A, Nievas F et al (2013) Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS ONE 8(11):e79614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinale M, Ratering S, Suarez C et al (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32

    Article  CAS  PubMed  Google Scholar 

  • Castillo P, Molina R, Andrade A et al (2015) Phytohormones and other plant growth regulators produced by PGPR: the genus Azospirillum. Handbook for Azospirillum. Springer, Cham

    Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J et al (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5):505–512

    Article  CAS  PubMed  Google Scholar 

  • Damam M, Gaddam B, Kausar R (2014) Effect of plant growth promoting rhizobacteria (PGPR) on Coleus forskohlii. Int J Curr Microbiol Appl Sci 3(9):266–274

    Google Scholar 

  • Dastager SG, Deepa CK, Puneet SC et al (2009) Isolation and characterization of plant growth-promoting strain Pantoea NII-186 from Western Ghat Forest soil, India. Lett Appl Microbiol 49:20–25

    Article  CAS  PubMed  Google Scholar 

  • Dastager SG, Kumaran DC, Pandey A (2010) Characterization of plant growth promoting rhizobacterium Exiguobacterium NII-0906 for its growth promotion of cowpea Vigna unguiculata. Biologia 65:197–203

    Article  CAS  Google Scholar 

  • Datta C, Basu P (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cajan. Microbiol Res 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IH (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15(11):1173–1180

    Article  PubMed  Google Scholar 

  • Ding Y, Wang J, Liu Y et al (2005) Isolation and identification of nitrogen fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70(3):1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenstein M (2013) Discovery in a dry spell. Nature 501:S7–S9

    Article  CAS  PubMed  Google Scholar 

  • Ekinci M, Turan M, Yildirim E et al (2014) Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Sci Pol Hortorum Cultus 13(6):71–85

    Google Scholar 

  • Farajzadeh D, Yakhchali B, Aliasgharzad N (2012) Plant growth promoting characterization of indigenous Azotobacteria isolated from soils in Iran. Curr Microbiol 64:397–403

    Article  CAS  PubMed  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O et al (2015) Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. J Basic Microbiol 55(3):303–311

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN et al (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes GC, Trarbach LJ, Campos SB et al (2014) Alternative nitrogenase and pseudogenes: unique features of the Paenibacillus riograndensis nitrogen fixation system. Res Microbiol 165:571–580

    Article  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Chapter  Google Scholar 

  • Gabriela F, Casanovas EM, Quillehauquy V (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Gaur AC (1990) Physiological functions of phosphate solubilizing microorganisms. In: Gaur AC (ed) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publishers, New Delhi, pp 16–72

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J et al (2007) Promotion of plant growth by ACC deaminase containing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gomiero T, Pimentel D, Paoletti MG (2011) Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit Rev Plant Sci 30:95–124

    Article  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Gouda S, Kerry RG, Das G (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbiol Biochem 7:96–102

    CAS  Google Scholar 

  • Gyaneshwar P, Naresh KG, Parekh LJ et al (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hameeda B, Harinib G, Rupelab OP (2008) Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA (2016) Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 26(1):38–48. https://doi.org/10.1016/j.sjbs.2016.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassen AI, Bopape FL, Sanger LK (2016) Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 23–36

    Chapter  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D et al (2009) Rhizosphere: biophysics, biogeochemistry, and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hong SH, Ham SY, Kim JS et al (2016) Application of sodium polyacrylate and plant growth-promoting bacterium, Micrococcaceae HW-2 on the growth of plants cultivated in the rooftop. Int Biodeterior Biodegrad 133:297–303

    Article  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 43:1825–1831

    Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM et al (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  PubMed  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Lee S, Kim H et al (2003) Plant growth promotion in soil by some inoculated microorganisms. J Microbiol 41:271–276

    CAS  Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. E3 J Agric Res Dev 5:108–119

    Google Scholar 

  • Ji X, Lu G, Gai Y et al (2010) Colonization of Morus alba L. by the plant-growth-promoting and antagonist bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiol 10:243–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamkar B (2016) Sustainable development principles for agricultural activities. Adv Plant Agric Res 3(5):1–2

    Google Scholar 

  • Kang BG, Kim WT, Yun HS et al (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kasa P, Modugapalem H, Battini K (2015) Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Biol Med 6:360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM et al (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227

    Article  Google Scholar 

  • Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung H-Y, Lee I-J (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132

    Article  PubMed  Google Scholar 

  • Krysciak D, Schmeisser C, Preusß S et al (2011) Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl Environ Microbiol 77:5089–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan KB, Othman R, Abdul Rahim K et al (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11(3):e0152478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant–microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kumar KV, Singh N, Behl HM et al (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar AS, Lakshmanan V, Caplan JL et al (2012) Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J 72:694–706

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Mishra S, Dixit V (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signal Behav 11(1):e1071004

    Article  PubMed  CAS  Google Scholar 

  • Kumari P, Khanna V (2016) Biodiversity of Pseudomonas and Bacillus possessing both bioantagonistic and plant growth promoting traits in chickpea rhizosphere. Int J Sci Nat 7(1):153–158

    CAS  Google Scholar 

  • Liu XM, Feng ZB, Zhang FD et al (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5:700–706

    Article  Google Scholar 

  • Liu Y, Wang H, Sun X et al (2011) Study on mechanisms of colonization of nitrogen-fixing PGPB, Klebsiella pneumoniae NG14 on the root surface of rice and the formation of biofilm. Curr Microbiol 62(4):1113–1122

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lian B, Dong H et al (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. J Geomicrobiol 29:413–421

    Article  CAS  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Lynch JM (1985) Origin, nature and biological activity of aliphatic substances and growth hormones found in soil. In: Vaughan D, Malcom RE (eds) Soil organic matter and biological activity. Martinus Nijhoff/Dr. Junk W, Publishers, Dordrecht/Boston, pp 151–174

    Chapter  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A et al (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  CAS  Google Scholar 

  • Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. Bacterial metabolites in sustainable agroecosystem. Springer, Cham, pp 159–182

    Book  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59

    Article  CAS  PubMed  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–268

    Article  CAS  Google Scholar 

  • Miller JB, Oldroyd GE (2012) The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. Signaling and communication in plant symbiosis. Springer, Berlin, pp 1–30

    Google Scholar 

  • Milošević NA, Marinković JB, Tintor BB (2012) Mitigating abiotic stress in crop plants by microorganisms. Proc Nat Sci Matica Srpska Novi Sad 123:17–26

    Article  Google Scholar 

  • Moustaine M, Elkahkahi R, Benbouazza A et al (2017) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L) and characterization for direct PGP abilities in Morocco. Int J Environ Agric Biotechnol 2(2):590–596

    Article  Google Scholar 

  • Murray JD, Muni RR, Torres-Jerez I et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65:244–252

    Article  CAS  PubMed  Google Scholar 

  • Mus F, Crook MB, Garcia K et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L et al (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: Biological processes in soil phosphorus cycling. Springer, Heidelberg, pp 251–244

    Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Neubauer U, Furrer G, Kayser A et al (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytorem 2:353–368

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1–26

    Article  CAS  Google Scholar 

  • Okon Y, Bloemberg GV, Lugtenberg BJJ (1998) Biotechnology of biofertilization and phytostimulation. In: Altman A (ed) Agricultural biotechnology. Marcel Dekker, New York, pp 327–349

    Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilisation by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbial Res 3:25–31

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Paustian K, Lehmann J, Ogle S et al (2016) Climatesmart soils. Nature 532:49–57

    Article  CAS  PubMed  Google Scholar 

  • Perez YM, Charest C, Dalpe Y et al (2016) Effect of inoculation with Arbuscular Mycorrhizal fungi on selected spring wheat lines. Sustain Agric Res 5(4):24–29

    Article  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Di Cello F, Ventura M et al (2000) Frequency and biodiversity of 2, 4 diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66(3):948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM et al (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14(1):1

    Article  CAS  Google Scholar 

  • Poupin MJ, Timmermann T, Vega A et al (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8(7):e69435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92:659–666

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol producing Pseudomonas sp. in takeall decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton Leeuw 81:537–547

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV et al (2010) Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers L, Remans R, Rao IM et al (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res 117:169–176

    Article  Google Scholar 

  • Raymond J, Siefert JL, Staples CR et al (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico F, Zala M, Keel C et al (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2, 4 diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173(4):861–872

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Ankhurst CE, Doube BM, Gupta VVSR et al (eds) Management of the soil biota in sustainable farming systems. CSIRO Publishing, Melbourne, pp 50–62

    Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ et al (2009) Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT et al (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robledo M, Rivera L, Jiménez-Zurdo JI et al (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T et al (2006) Genetics of phosphate solubilisation and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Sachdev DP, Chaudhari HG, Kasure VM et al (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993–1000

    CAS  PubMed  Google Scholar 

  • Saleem AR, Bangash N, Mahmood T et al (2015a) Rhizobacteria capable of producing ACC deaminase promote growth of velvet bean (Mucuna pruriens) under water stress condition. Int J Agric Biol 17:663–667

    Article  CAS  Google Scholar 

  • Saleem M, Zamir MSI, Haq I et al (2015b) Yield and quality of forage oat (Avena sativa L.) cultivars as affected by seed inoculation with nitrogenous strains. Am J Plant Sci 6(19):3251

    Article  Google Scholar 

  • Saleh S, Huang XD, Greenberg BM et al (2004) Phytoremediation of persistent organic contaminants in the environment. In: Singh A, Ward O (eds) Soil biology: applied bioremediation and phytoremediation. Springer, Berlin, pp 115–134

    Chapter  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Article  CAS  PubMed  Google Scholar 

  • Seldin L, Van Elsas JD, Penids EGC (1984) Bacillus azotofixans sp. nov. A nitrogen fixing species from Brazilian soils and grass roots. Int J syst Bacteriol 34:451–456

    Article  CAS  Google Scholar 

  • Shahzad R, Waqas M, Khan AL et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    Article  CAS  PubMed  Google Scholar 

  • Shakeel M, Rais A, Hassan MN et al (2015) Root Associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Shameer S, Prasad TNVKV (2018) Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. J Plant Growth Regul 84:1–13

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH et al (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shelud’ko AV, Shirokov AA, Sokolova MK et al (2010) Wheat root colonization by Azospirillum brasilense strains with different motility. Microbiology 9(5):688–695

    Article  CAS  Google Scholar 

  • Smith DL, Gravel V, Yergeau E (2017) Editorial: signaling in the phytomicrobiome. Front Plant Sci 8:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza R, Beneduzi A, Ambrosini A et al (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:1–19

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, Burris RH, Evans HJ (1992) Biological nitrogen fixation. Springer, Berlin

    Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E et al (2016) Evidence for a rhizobia induced drought stress response strategy in Medicago truncatula. J Proteomics 136:202–213

    Article  CAS  PubMed  Google Scholar 

  • Stephane C, Brion D, Jerzy N et al (2005) Use of plant growth bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int J Curr Microbiol Appl Sci 5(2):661–683

    Article  CAS  Google Scholar 

  • Syed S (2016) Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies. Ann Microbiol 66(3):1315–1327

    Article  CAS  Google Scholar 

  • Syed S, Chinthala P (2015) Heavy metal detoxification by different Bacillus species Isolated from solar salterns. Scientifica (Cairo) 2015(2015):319760

    Google Scholar 

  • Tabassum B, Khan A, Tariq M et al (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Tarafdar A, Raliya R, Wang WN et al (2013) Green synthesis of TiO2 nanoparticle using Aspergillus tubingensis. Adv Sci Eng Med 5:943–949

    Article  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Timmusk K, Behers L (2013) Rhizobacterial plant drought stress tolerance enhancement. J Food Security 1:10–16

    Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trifi H, Ben Salem I, Kolsi Benzina N et al (2017) Effectiveness of the plant growth-promoting rhizobacterium Pantoea sp. BRM17 in enhancing Brassica napus growth in phosphogypsum-amended soil. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60454-5

  • Vacheron J, Desbrosses G, Bouffaud ML et al (2014) Plant growth-promoting rhizobacteria and root system functioning. Ecophysiol Root Syst Environ Interact 166. https://doi.org/10.3389/fpls.2013.00356

  • Vejan P, Abdullah R, Khadiran T (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability- a review. Molecules 21(573):1–17

    Google Scholar 

  • Verma JP, Yada J, Tiwari KN et al (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease in sugarcane. Sugar Tech 1(3):67–76

    Article  Google Scholar 

  • Website used.: https://ourworldindata.org/world-population-growth. Accessed 15 Oct 2018

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yasmin S, Hafeez FY, Rasul G (2014) Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedling disease caused by Fusarium oxysporum. Biocontrol Sci Technol 24(11):1227–1242

    Article  Google Scholar 

  • Yolcu H, Turan M, Lithourgidis A et al (2011) Effects of plant growth-promoting rhizobacteria and manure on yield and quality characteristics of Italian ryegrass under semi-arid conditions. Aust J Crop Sci 5(13):1730–1736

    Google Scholar 

  • Yu X, Liu X, Zhu TH et al (2011) Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biol Fert Soils 47:437–446

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altaf, M.M., Khan, M.S.A., Ahmad, I. (2019). Functional Diversity of Plant Growth-Promoting Rhizobacteria: Recent Progress and Future Prospects. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_8

Download citation

Publish with us

Policies and ethics