Skip to main content

Plant Growth-Promoting Rhizobacteria (PGPRs): Functions and Benefits

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Microorganisms have a fundamental contribution in the growth and development of plants by influencing their physiology and metabolism. Plant growth-promoting rhizobacteria (PGPRs) have been recognized as an important coevolutionary factor between plants and microbes. PGPRs show antagonistic and synergistic interactions with pathogenic microbes and plants, respectively. PGPRs produce a vast array of secondary compounds which facilitate agricultural yield as well as environmental cleanup. Since the extensive uses of chemical fertilizers and pesticides have caused deleterious impacts on almost all life forms in nature, researchers have shifted their attention on PGPRs throughout the world to improve the crop productivity. Moreover, the cost-effective and eco-friendly nature of PGPR makes them desirable candidate for application in crop disease management and integrated nutrient management. As such, now attention is also being focused to explore plant microbiome in order to identify new strains of microbes that can be used for enhancing plant growth and health in a sustainable way. The present chapter highlights the functions of PGPRs with special reference to its properties such as nutrient acquisition, mineral solubilization, siderophore production, phytohormone production, and tolerance to biotic as well as abiotic stresses. It also focuses on the benefits of PGPRs as biofertilizer, phytostimulant, and biocontrol agents and in rhizoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahanthem S, Jha DK (2007) Response of rice crop inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria to different soil nitrogen concentrations. Mycorrhiza News 18:15–20

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Evaluation of plant-growth promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Google Scholar 

  • Anand K, Kumari B, Mallick MA (2016) Phosphate solubilizing microbes: an effective and alternative approach as bio-fertilizers. Int J Pharm Sci 8:37–40

    CAS  Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 411–449

    Chapter  Google Scholar 

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas sp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharide producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Baset Mia MA, Shamsuddin ZH, Wahab Z et al (2010) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue cultured Musa plantlets under nitrogen-free hydroponics condition. Aust J Crop Sci 4:85–90

    CAS  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Berendsen RL, Verk MCV, Stringlis IA et al (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 16:539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK et al (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Fact 13:1–10

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. BioMetals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Volpin H, Kigel J et al (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castignetti D, Smarelli J (1986) Siderophores, the iron nutrition of plants, and nitrate reductase. FEBS Lett 209:147–151

    Article  CAS  Google Scholar 

  • Chernin L, Toklikishvili N, Ovadis M et al (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus sp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R et al (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 73–109

    Google Scholar 

  • Damam M, Kaloori K, Gaddam B et al (2016) Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int J Pharm Sci Rev 37:130–136

    CAS  Google Scholar 

  • de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity and activity of 2, 4-diacetylphloroglucinol producing fluorescent Pseudomonas sp. in Dutch take-all decline soils. Phytopathology 93:54–63

    Article  PubMed  Google Scholar 

  • De Vleesschauwer D, Hofte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Article  CAS  Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Basic Biotechnol 3:1–5

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98:221–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY et al (2004) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 Sept–1 Oct 2004

    Google Scholar 

  • Domenech J, Reddy MS, Kloepper JW et al (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Bio Control 51:245–258

    CAS  Google Scholar 

  • Dubey DC, Maheshwari DK (2011) Role of PGPR in integrated nutrient management of oil seed crops. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer-Verlag, Heidelberg, pp 1–17

    Google Scholar 

  • Duffy B (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 73–96

    Chapter  Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level. In: Schuurmann G, Markert B (eds) Ecotoxicology. Wiley, Heidelberg, pp 587–620

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation Scientifica. https://doi.org/10.6064/2012/963401, Article ID 963401

    Article  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:3–68

    Article  Google Scholar 

  • Glick BR, Cheng Z, Czarny J et al (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J et al (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbiol Biochem 7:96–102

    CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38:704–713

    Article  CAS  PubMed  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR et al (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78–85

    Google Scholar 

  • Hepper CM (1975) Extracellular polysaccharides of soil bacteria. In: Walker N (ed) Soil microbiology, a critical review. Wiley, New York, pp 93–111

    Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C et al (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116:173–181

    Article  CAS  PubMed Central  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K et al (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929

    Google Scholar 

  • Kamal R, Gusain YS, Kumar V (2014) Interaction and symbiosis of fungi, actinomycetes and plant growth promoting rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbial Appl Sci 3(7):564–585

    Google Scholar 

  • Kamilova F, Goel V, Azarova T et al (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887

    Article  Google Scholar 

  • Kaushal M, Wani SP (2015) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khodair TA, Galal GF, El-Tayeb TS (2008) Effect of inoculating wheat seedlings with exopolysaccharide-producing bacteria in saline soil. J Appl Sci Res 4:2065–2070

    Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IVth international conference on plant pathogenic bacteria, France, vol 2, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M et al (1980) Pseudomonas siderophores: a mechanism explaining disease- suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus sp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kucey RMN (1988) Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars. J Appl Bacteriol 64:187–196

    Article  CAS  Google Scholar 

  • Kumar P, Dubey RC (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Perspect Appl Microbiol 1:6–38

    Google Scholar 

  • Kundan R, Pant G, Jado N et al (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertilizers Pesticides 6:2

    Article  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. J Geomicrobiol 29:413–421

    Article  CAS  Google Scholar 

  • Liu W, Wang Q, Hou J et al (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci Rep 6:26710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucangeli C, Bottini R (1996) Reversion of dwarfism in dwarf-1 maize (Zea mays L.) and dwarf-x rice (Oryza sativa L.) mutants by endophytic Azospirillum sp. Biocell 20:223–228

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton Leeuw 86:1–25

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Anton Leeuw 81:373–383

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG et al (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:1–14

    Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Minorsky PV (2008) On the inside. Plant Physiol 146:323–324

    Article  CAS  PubMed Central  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M et al (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA et al (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 51–103

    Chapter  Google Scholar 

  • Neubauer U, Furrer G, Kayser A et al (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368

    Article  CAS  Google Scholar 

  • Nie L, Shah S, Rashid A et al (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM et al (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu DD, Liu HX, Jiang CH et al (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Nivya RM (2015) A study on plant growth promoting activity of the endophytic bacteria isolated from the root nodules of Mimosa pudica plant. Int J Innov Res Sci Er Technol 4:6959–6968

    Article  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas sp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Parada M, Vinardell J, Ollero F et al (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant Microbe Interact 19:43–52

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilisation by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbial Res 3:25–31

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-l-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80

    Article  CAS  PubMed  Google Scholar 

  • Prathap M, Ranjitha KBD (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microbiol 6:1–4

    Google Scholar 

  • Principe A, Alvarez F, Castro MG et al (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55:314–322

    Article  CAS  PubMed  Google Scholar 

  • Rai AK, Tiwari SP (1999) Response to NaCl of nitrate assimilation and nitrogenase activity in the cyanobacterium Anabaena sp. PCC 7120 and its mutants. J Appl Microbiol 87:877–883

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumarb M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ratti N, Kumar S, Verma HN et al (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol Res 156:145–149

    Article  CAS  PubMed  Google Scholar 

  • Reddy AJ, Rao IM (1968) Influence of induced water stress on chlorophyll components of proximal and distal leaflets of groundnut plants. Curr Sci 5:118–121

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    Article  CAS  PubMed  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL et al (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soil 42:267–272

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Salamone IEG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195

    Chapter  Google Scholar 

  • Saleem M, Arshad M, Hussain S et al (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Indian. Microbiol Biotechnol 34:635–648

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M et al (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro MV, Bogino PC, Nocelli N et al (2016) Analysis of plant growth promoting effects of fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7:1–17

    Article  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Gen 32:33–57

    Article  CAS  Google Scholar 

  • Sgroy V, Cassan F, Masciarelli O et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front. Microbiol 6:937

    PubMed  PubMed Central  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Strzelczyk E, Kampert M, Pachlewski R (1994) The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza 4:193–196

    Article  CAS  Google Scholar 

  • Sujatha N, Ammani K (2013) Siderophore production by the isolates of fluorescent Pseudomonads. Int J Cur Res Rev 5:1–7

    Google Scholar 

  • Tully RE, van Berkum P, Lovins KW, Keister DL (1998) Identification and sequencing of a cytochrome P450 gene cluster from Bradyrhizobium japonicum. Biochim Biophys Acta 1398:243–255

    Article  CAS  PubMed  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Ogaz AL, Munoz-Castellanos LN, Nevarez-Moorillon GV (2015) Biocontrol of phytopathogens: Antibiotic production as mechanism of control. In: Mendez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs. Formatex, Badajoz, pp 305–309

    Google Scholar 

  • Upadyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free living plant growth promoting rhizobacteria. Ind J Sci Res 3:73–78

    Google Scholar 

  • van de Mortel JE, de Vos RCH, Dekkers E et al (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Wees SCM, Luijendijk M, Smoorenburg I et al (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549

    Article  PubMed  Google Scholar 

  • Vansuyt G, Robin A, Briat JF et al (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vessey JK, Buss TJ (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: controlled-environment studies. Can J Plant Sci 82:282–290

    Article  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE et al (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Voisard C, Keel C, Haas D et al (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas sp. and Glomus clarum NT4. Biol Fertil Soils 24:365–371

    Article  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Shi H, Du Z et al (2016) Comparative genomic and functional analysis reveals conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep 6:21329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN et al (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M et al (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zapata PJ, Botella MA, Pretel MT et al (2007) Responses of ethylene biosynthesis to saline stress in seedlings of eight plant species. Plant growth Regul 53:97–106

    Article  CAS  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ et al (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DS is grateful to DST-INSPIRE, Department of Science and Technology, New Delhi, for the award of Junior Research Fellowship (DST/INSPIRE Fellowship/2014/296, IF140707). PG and JK are thankful to University Grants Commission (UGC), New Delhi, for providing financial assistance as JRF. Research in the area of PGPRs is partly supported by a research grant sanctioned to AK by the Indian Council of Agricultural Research, Government of India, New Delhi (NBAIM/AMAAS/2014-17/PF/4).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Ghosh, P., Kumar, J., Kumar, A. (2019). Plant Growth-Promoting Rhizobacteria (PGPRs): Functions and Benefits. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_7

Download citation

Publish with us

Policies and ethics