Skip to main content

Microbial Bioconversion of Agricultural Wastes for Rural Sanitation and Soil Carbon Enrichment

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Managing agricultural wastes and plant residues and returning them to agricultural and horticultural land are one of the most important ways of improving the fertility of the soil for sustainable agriculture. In fact, organic matter is known as a fertility pillar due to its constructive effects on physical, chemical, and biological properties of the soil. The production of compost from agricultural and industrial wastes, while reducing the risks of water and soil pollution caused by using these materials in the environment, can also reduce input costs for farmers. In the production of compost, many parameters determine the mode and duration of composting. In the present chapter, compost production process, factors affecting composting process, organic matter compounds in organic wastes, organic wastes decomposers, value of microbial inoculation for organic waste decomposition, suitable microorganisms for organic waste decomposition, and finally quality criteria of produced compost for use in agriculture are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50:5096–5107

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Jilani G, Arshad M, Zahir ZA, Khalid A (2007) Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann Microbiol 57:471–479

    Article  Google Scholar 

  • Alexander M (1961) Introduction to soil microbiology. Wiley, New York

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology-2

    Google Scholar 

  • Amir S, Benlboukht F, Cancian N, Winterton P, Hafidi M (2008) Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. J Hazard Mater 160:448–455

    Article  CAS  PubMed  Google Scholar 

  • Amir S, Jouraiphy A, Meddich A, El Gharous M, Winterton P, Hafidi M (2010) Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J Hazard Mater 177:524–529

    Article  CAS  PubMed  Google Scholar 

  • Aparna C, Saritha P, Himabindu V, Anjaneyulu Y (2008) Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments. Waste Manag 28:1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  CAS  PubMed  Google Scholar 

  • Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221

    Article  CAS  PubMed  Google Scholar 

  • Ben-David EA, Zaady E, Sher Y, Nejidat A (2011) Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses. FEMS Microbiol Ecol 76:492–503

    Article  CAS  PubMed  Google Scholar 

  • Bernai MP, Paredes C, Sanchez-Monedero MA, Cegarra J (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol 63:91–99

    Article  Google Scholar 

  • Brown ME, Barros T, Chang MCY (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081

    Article  CAS  PubMed  Google Scholar 

  • Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MCY (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133:18006–18009

    Article  CAS  PubMed  Google Scholar 

  • Bustamante MA, Paredes C, Marhuenda-Egea FC, Pérez-Espinosa A, Bernal MP, Moral R (2008) Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 72:551–557

    Article  CAS  PubMed  Google Scholar 

  • Campbell AG Jr, Folk RL, Tripepi RR (1997) Wood ash as an amendment in municipal sludge and yard waste composting processes. Compost Sci Util 5:62–73

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2008) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Stamler JS (2006) Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med 16:259–265

    Article  CAS  PubMed  Google Scholar 

  • Cho C-F, Lee W-C (1999) Formulation of a biocontrol agent by entrapping biomass of Trichoderma viride in gluten matrix. J Biosci Bioeng 87:822–824

    Article  CAS  PubMed  Google Scholar 

  • del Carmen Vargas-García M, Suárez-Estrella FF, López MJ, Moreno J (2006) Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochem 41:1438–1443

    Article  CAS  Google Scholar 

  • Echeverria MC et al (2012) Microbially-enhanced composting of wet olive husks. Bioresour Technol 104:509–517

    Article  CAS  PubMed  Google Scholar 

  • Enari TM (1983) Microbial cellulase; microbial enzymes and biotechnology. Applied Science Publishers, London, pp 183–223

    Google Scholar 

  • Epstein E (1994) Composting and bioaerosols. BioCycle

    Google Scholar 

  • Fang A, Pierson DL, Mishra SK, Demain AL (2000) Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol 54:33–36

    Article  CAS  PubMed  Google Scholar 

  • Gaind S, Pandey AK (2005) Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants. J Basic Microbiol 45:301–311

    Article  CAS  PubMed  Google Scholar 

  • Galai S, Limam F, Marzouki MN (2009) A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetics dyes. Appl Biochem Biotechnol 158:416–431

    Article  CAS  PubMed  Google Scholar 

  • Gotaas HB (1956) Composting. Sanitary disposal and reclamation of organic wastes composting sanitary disposal and reclamation of organic wastes

    Google Scholar 

  • Gupta UC, Sowden FJ (1964) Isolation and characterization of cellulose from soil organic matter. Soil Sci 97:328–333

    Article  CAS  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14

    Article  Google Scholar 

  • Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev 16:2179–2206

    Article  CAS  PubMed  Google Scholar 

  • Hatakka A (2001) Biopolymers. Biology, chemistry, biotechnology, applications. Lignin, humic substances and coal 1:129–180

    Google Scholar 

  • Haug R (2018) The practical handbook of compost engineering. Routledge, London

    Book  Google Scholar 

  • Hirai MF, Chamyasak V, Kubota H (1983) Standard measurement for compost maturity. BioCycle 24:54–56

    Google Scholar 

  • Howard RL, Abotsi E, Van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    Article  CAS  Google Scholar 

  • Huang GF, Wu QT, Wong JWC, Nagar BB (2006) Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour Technol 97:1834–1842

    Article  CAS  PubMed  Google Scholar 

  • Hultman J, Kurola J, Rainisalo A, Kontro M, Romantschuk M (2010) Utility of molecular tools in monitoring large scale composting. In: Microbes at Work. Springer, pp 135–151

    Google Scholar 

  • Ilyin VK, Korniushenkova IN, Starkova LV, Lauriniavichius KS (2005) Study of methanogenesis during bioutilization of plant residuals. Acta Astronautica 56:465–470

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Riddech N, Klammer S (2013) Microbiology of composting. Springer Science & Business Media, Berlin

    Google Scholar 

  • Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV, Wilson M (2006) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biol Control 36:358–367

    Article  Google Scholar 

  • Jurado MM, Suárez-Estrella F, Vargas-García MC, López MJ, López-González JA, Moreno J (2014) Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. J Environ Manag 133:355–364

    Article  CAS  Google Scholar 

  • Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E (2017) Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep 9:679–705

    Article  CAS  PubMed  Google Scholar 

  • Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 61:374–379

    Article  CAS  PubMed  Google Scholar 

  • Kutzner HJ (1999) The microbiology of composting. Wiley-VCH, New York

    Google Scholar 

  • Langarica-Fuentes A, Handley PS, Houlden A, Fox G, Robson GD (2014) An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol 11:132–144

    Article  Google Scholar 

  • Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Terrestrial environments. Environ Microbiol:61–80

    Google Scholar 

  • Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie Van Leeuwenhoek 101:905–917

    Article  CAS  PubMed  Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  • Marhuenda-Egea FC, Martínez-Sabater E, Jordá J, Moral R, Bustamante MA, Paredes C, Pérez-Murcia MD (2007) Dissolved organic matter fractions formed during composting of winery and distillery residues: evaluation of the process by fluorescence excitation–emission matrix. Chemosphere 68:301–309

    Article  CAS  PubMed  Google Scholar 

  • Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Article  CAS  PubMed  Google Scholar 

  • Miikki V, Senesi N, Hänninen K (1997) Characterization of humic material formed by composting of domestic and industrial biowastes: Part 2 spectroscopic evaluation of humic acid structures. Chemosphere 34:1639–1651

    Article  CAS  Google Scholar 

  • Miller FC (1989) Matric water potential as an ecological determinant in compost, a substrate dense system. Microb Ecol 18:59–71

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogam Mycol 18:19–70

    Google Scholar 

  • Nakasaki K, Fujiwara S, Kubota H (1994) A newly isolated thermophilic bacterium, Bacillus licheniformis HA1 to accelerate the organic matter decomposition in high rate composting. Compost Sci Util 2:88–96

    Article  Google Scholar 

  • Nelson R, Babie B (2005) An experimental study of the stability of a four-vortex system, p 4852

    Google Scholar 

  • Ohtaki A, Akakura N, Nakasaki K (1998) Effects of temperature and inoculum on the degradability of poly-ε-caprolactone during composting. Polym Degrad Stab 62:279–284

    Article  CAS  Google Scholar 

  • Pietro M, Paola C (2004) Thermal analysis for the evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim Acta 413:209–214

    Article  CAS  Google Scholar 

  • Polizeli M, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Portillo MC, Villahermosa D, Corzo A, Gonzalez JM (2011) Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Appl Environ Microbiol 77:351–354

    Article  CAS  PubMed  Google Scholar 

  • Rasapoor M, Nasrabadi T, Kamali M, Hoveidi H (2009) The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Manag 29:570–573

    Article  CAS  PubMed  Google Scholar 

  • Raynal J, Delgenes JP, Moletta R (1998) Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresour Technol 65:97–103

    Article  CAS  Google Scholar 

  • Romero MD, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzym Microb Technol 25:244–250

    Article  CAS  Google Scholar 

  • Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J (2003) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94:127–137

    Article  CAS  PubMed  Google Scholar 

  • Saha JK, Panwar N, Singh MV (2010) An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag 30:192–201

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Monedero MA, Cegarra J, García D, Roig A (2002) Chemical and structural evolution of humic acids during organic waste composting. Biodegradation 13:361–371

    Article  PubMed  Google Scholar 

  • Schwarz W (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  PubMed  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities – a review. Waste Manag 28:459–467

    Article  PubMed  Google Scholar 

  • Shin HS, Hwang EJ, Park BS, Sakai T (1999) The effects of seed inoculation on the rate of garbage composting. Environ Technol 20:293–300

    Article  CAS  Google Scholar 

  • Singh A, Abidi AB, Agrawal AK, Darmwal NS (1991) Single cell protein production by Aspergillus niger and its evaluation. Zentralblatt für mikrobiologie 146:181–184

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sinha S, Saxena R, Pandey K, Bhatt K (2004) Translocation of metals and its effects in the tomato plants grown on various amendments of tannery waste: evidence for involvement of antioxidants. Chemosphere 57:91–99

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom E (2013) Wood chemistry: fundamentals and applications. Elsevier, Saint Louis

    Google Scholar 

  • Stewart BJ, Leatherwood JM (1976) Derepressed synthesis of cellulase by Cellulomonas. J Bacteriol 128:609–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez-Estrella F, Vargas-Garcia MC, López MJ, Moreno J (2008) Changes in carbon fractions during composting of plant wastes and the influence of a humic extract on soil microorganism growth dynamic biochemistry process. Biotechnol Mol Biol 2:90–95

    Google Scholar 

  • Sundberg C, SmÃ¥rs S, Jönsson H (2004) Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour Technol 95:145–150

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Wan HC, Tam NFY (2002) Microbial population dynamics and enzyme activities during composting. Compost Sci Util 10:150–161

    Article  Google Scholar 

  • Tosun I, Gönüllü MT, Arslankaya E, Günay A (2008) Co-composting kinetics of rose processing waste with OFMSW. Bioresour Technol 99:6143–6149

    Article  CAS  PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Vargas-Garcia MC, Suárez-Estrella F, Lopez MJ, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag 30:771–778

    Article  CAS  PubMed  Google Scholar 

  • Varma VS, Kalamdhad AS (2015) Evolution of chemical and biological characterization during thermophilic composting of vegetable waste using rotary drum composter. Int J Environ Sci Technol 12:2015–2024

    Article  CAS  Google Scholar 

  • Veeken A, Nierop K, de Wilde V, Hamelers B (2000) Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresour Technol 72:33–41

    Article  CAS  Google Scholar 

  • Verstraete W, Top EM (1999) Soil clean-up: lessons to remember. Int Biodeterior Biodegradation 43:147–153

    Article  Google Scholar 

  • Waksman SA (1936) Humus origin, chemical composition, and importance in nature. The Williams and Wilkins Company, Baltimore

    Book  Google Scholar 

  • Wang GK et al (2001) Regulation of the cycling of timeless (tim) RNA. J Neurobiol 47:161–175

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Changa CM, Watson ME, Dick WA, Chen Y, Hoitink HAJ (2004) Maturity indices for composted dairy and pig manures. Soil Biol Biochem 36:767–776

    Article  CAS  Google Scholar 

  • Xi B et al (2015) Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting. Bioresour Technol 196:399–405

    Article  CAS  PubMed  Google Scholar 

  • Xi B, Zhang G, Liu H (2005) Process kinetics of inoculation composting of municipal solid waste. J Hazard Mater 124:165–172

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Zeng G-M, Yang Z-H, Shi W-J, Huang C, Fan C-Z, Xu Z-Y (2009) Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste. Bioresour Technol 100:4807–4813

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Yasuda S, Wu H, Liu H (2000) Analysis of the structure of lignin-carbohydrate complexes by the specific 13 C tracer method. J Wood Sci 46:130–136

    Article  CAS  Google Scholar 

  • Yu H et al (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18:793–802

    Article  CAS  PubMed  Google Scholar 

  • Zaved HK, Rahman MM, Rahman MM, Rahman A, Arafat SMY, Rahman MS (2008) Isolation and characterization of effective bacteria for solid waste degradation for organic manure. Curr Appl Sci Technol 8:44–44

    Google Scholar 

  • Zazouli MA, Ardebilian MB, Ghahramani E, Alahabad GM (2009) Principles of compost production technology. Khaniran, Tehran, p 25

    Google Scholar 

Download references

Acknowledgments

We wish to thank University of Tehran for providing the necessary facilities for doing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etesami, H., Hemati, A., Alikhani, H.A. (2019). Microbial Bioconversion of Agricultural Wastes for Rural Sanitation and Soil Carbon Enrichment. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_6

Download citation

Publish with us

Policies and ethics