Skip to main content

A Tag-Based Affinity Purification Mass Spectrometry Workflow for Systematic Isolation of the Human Mitochondrial Protein Complexes

  • Chapter
  • First Online:
Mitochondria in Health and in Sickness

Abstract

Mitochondria (mt) are double-membraned, dynamic organelles that play an essential role in a large number of cellular processes, and impairments in mt function have emerged as a causative factor for a growing number of human disorders. Given that most biological functions are driven by physical associations between proteins, the first step towards understanding mt dysfunction is to map its protein-protein interaction (PPI) network in a comprehensive and systematic fashion. While mass-spectrometry (MS) based approaches possess the high sensitivity ideal for such an endeavor, it also requires stringent biochemical purification of bait proteins to avoid detecting spurious, non-specific PPIs. Here, we outline a tagging-based affinity purification coupled with mass spectrometry (AP-MS) workflow for discovering new mt protein associations and providing novel insights into their role in mt biology and human physiology/pathology. Because AP-MS relies on the creation of proteins fused with affinity tags, we employ a versatile-affinity (VA) tag, consisting of 3× FLAG, 6 × His, and Strep III epitopes. For efficient delivery of affinity-tagged open reading frames (ORF) into mammalian cells, the VA-tag is cloned onto a specific ORF using Gateway recombinant cloning, and the resulting expression vector is stably introduced in target cells using lentiviral transduction. In this chapter, we show a functional workflow for mapping the mt interactome that includes tagging, stable transduction, selection and expansion of mammalian cell lines, mt extraction, identification of interacting protein partners by AP-MS, and lastly, computational assessment of protein complexes/PPI networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang Y, Wang X (2012) Comparative mitochondrial proteomics: perspective in human diseases. J Hematol Oncol 5:11. https://doi.org/10.1186/1756-8722-5-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cassarino DS, Bennett JP (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev 29:1–25. https://doi.org/10.1016/S0165-0173(98)00046-0

    Article  CAS  PubMed  Google Scholar 

  3. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nat Lond 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  Google Scholar 

  4. Ren J, Pulakat L, Whaley-Connell A, Sowers JR (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med 88:993–1001. https://doi.org/10.1007/s00109-010-0663-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38:1278–1295. https://doi.org/10.1016/j.freeradbiomed.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  6. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. https://doi.org/10.1146/annurev.genet.39.110304.095751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Floyd BJ, Wilkerson EM, Veling MT et al (2016) Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol Cell 63:621–632. https://doi.org/10.1016/j.molcel.2016.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malty RH, Aoki H, Kumar A et al (2017) A map of human mitochondrial protein interactions linked to neurodegeneration reveals new mechanisms of redox homeostasis and NF-κB signaling. Cell Syst 5:564–577.e12. https://doi.org/10.1016/j.cels.2017.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Basso M, Giraudo S, Corpillo D et al (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4:3943–3952. https://doi.org/10.1002/pmic.200400848

    Article  CAS  PubMed  Google Scholar 

  10. Sokolina K, Kittanakom S, Snider J et al (2017) Systematic protein-protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol 13:918

    Article  Google Scholar 

  11. Yao Z, Darowski K, St-Denis N et al (2017) A global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell 65:347–360. https://doi.org/10.1016/j.molcel.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Havugimana PC, Hart GT, Nepusz T et al (2012) A census of human soluble protein complexes. Cell 150:1068–1081. https://doi.org/10.1016/j.cell.2012.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wan C, Borgeson B, Phanse S et al (2015) Panorama of ancient metazoan macromolecular complexes. Nature 525:339–344. https://doi.org/10.1038/nature14877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hein MY, Hubner NC, Poser I et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723. https://doi.org/10.1016/j.cell.2015.09.053

    Article  CAS  PubMed  Google Scholar 

  15. Huttlin EL, Ting L, Bruckner RJ et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–440. https://doi.org/10.1016/j.cell.2015.06.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643. https://doi.org/10.1038/nature04670

    Article  CAS  PubMed  Google Scholar 

  17. Morgenstern M, Stiller SB, Lübbert P et al (2017) Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 19:2836–2852. https://doi.org/10.1016/j.celrep.2017.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. ten Have S, Boulon S, Ahmad Y, Lamond AI (2011) Mass spectrometry-based immuno-precipitation proteomics – the user’s guide. Proteomics 11:1153–1159. https://doi.org/10.1002/pmic.201000548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mak AB, Ni Z, Hewel JA et al (2010) A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol Cell Proteomics MCP 9:811–823. https://doi.org/10.1074/mcp.M000002-MCP201

    Article  CAS  PubMed  Google Scholar 

  20. Encinas M, Iglesias M, Liu Y et al (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003

    Article  CAS  Google Scholar 

  21. Clayton DA, Shadel GS (2014) Purification of mitochondria by sucrose step density gradient centrifugation. Cold Spring Harb Protoc 2014:pdb.prot080028. https://doi.org/10.1101/pdb.prot080028

    Article  PubMed  Google Scholar 

  22. Kislinger T, Cox B, Kannan A et al (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125:173–186. https://doi.org/10.1016/j.cell.2006.01.044

    Article  CAS  PubMed  Google Scholar 

  23. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403. https://doi.org/10.1016/j.cell.2009.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leung HCM, Xiang Q, Yiu SM, Chin FYL (2009) Predicting protein complexes from PPI data: a core-attachment approach. J Comput Biol J Comput Mol Cell Biol 16:133–144. https://doi.org/10.1089/cmb.2008.01TT

    Article  CAS  Google Scholar 

  25. van Dongen S, Abreu-Goodger C (2012) Using MCL to extract clusters from networks. Methods Mol Biol Clifton NJ 804:281–295. https://doi.org/10.1007/978-1-61779-361-5_15

    Article  CAS  Google Scholar 

  26. Westermarck J, Ivaska J, Corthals GL (2013) Identification of protein interactions involved in cellular signaling. Mol Cell Proteomics MCP 12:1752–1763. https://doi.org/10.1074/mcp.R113.027771

    Article  CAS  PubMed  Google Scholar 

  27. Sahni N, Yi S, Taipale M et al (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161:647–660. https://doi.org/10.1016/j.cell.2015.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang B, Tang S, Ma C et al (2017) Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat Commun 8:2240. https://doi.org/10.1038/s41467-017-02409-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vlasblom J, Jin K, Kassir S, Babu M (2014) Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. J Proteome 100:8–24. https://doi.org/10.1016/j.jprot.2013.11.008

    Article  CAS  Google Scholar 

  30. Hyung S-J, Ruotolo BT (2012) Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 12:1547–1564. https://doi.org/10.1002/pmic.201100520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Babu’s group for their helpful comments. This work was funded by National Institutes of Health (R01GM106019) and Canadian Institutes of Health Research (MOP-125952; RSN-124512, 132191; FDN-154318) to MB. MB is a CIHR New Investigator (MSH-130178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Z., Malty, R., Moutaoufik, M.T., Zhang, Q., Jessulat, M., Babu, M. (2019). A Tag-Based Affinity Purification Mass Spectrometry Workflow for Systematic Isolation of the Human Mitochondrial Protein Complexes. In: Urbani, A., Babu, M. (eds) Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, vol 1158. Springer, Singapore. https://doi.org/10.1007/978-981-13-8367-0_6

Download citation

Publish with us

Policies and ethics