Skip to main content

Mitochondria Lysine Acetylation and Phenotypic Control

  • Chapter
  • First Online:
Book cover Mitochondria in Health and in Sickness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1158))

Abstract

Mitochondria have a central role in cellular metabolism and reversible post-translational modifications regulate activity of mitochondrial proteins. Thanks to advances in proteomics, lysine acetylation has arisen as an important post-translational modification in the mitochondrion. During acetylation an acetyl group is covalently attached to the epsilon amino group in the side chain of lysine residues using acetyl-CoA as the substrate donor. Therefore the positive charge is neutralized, and this can affect the function of proteins thereby regulating enzyme activity, protein interactions, and protein stability. The major deacetylase in mitochondria is SIRT3 whose activity regulates many mitochondrial enzymes. The method of choice for the analysis of acetylated proteins foresees the combination of mass spectrometry-based proteomics with affinity enrichment techniques. Beyond the identification of lysine-acetylated proteins, many studies are moving towards the characterization of acetylated patterns in different diseases. Indeed, modifications in lysine acetylation status can directly alter mitochondrial function and, therefore, be linked to human diseases such as metabolic diseases, cancer, myocardial injury and neurodegenerative diseases. Despite the progress in the characterization of different lysine acetylation sites, additional studies are needed to differentiate the specific changes with a significant biological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn BH, Kim HS, Song S et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 105(38):14447–14452. https://doi.org/10.1073/pnas.0803790105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  Google Scholar 

  3. Alrob OA, Sankaralingam S, Ma C et al (2014) Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc Res 103(4):485–497. https://doi.org/10.1093/cvr/cvu156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35. https://doi.org/10.1042/bse0520023

    Article  CAS  PubMed  Google Scholar 

  5. Ansari A, Rahman MS, Saha et al (2017) Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 16(1):4–16. https://doi.org/10.1111/acel.12538

    Article  CAS  PubMed  Google Scholar 

  6. Baeza J, Dowell JA, Smallegan MJ et al (2014) Stoichiometry of site-specific lysine acetylation in an entire proteome. J Biol Chem 289:21326–21338. https://doi.org/10.1074/jbc.M114.581843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bao J, Scott I, Lu Z et al (2010) SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic Biol Med 49:1230–1237. https://doi.org/10.1016/j.freeradbiomed.2010.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bharathi SS, Zhang Y, Mohsen AW et al (2013) Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 288(47):33837–33847. https://doi.org/10.1074/jbc.M113.510354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bo H, Kang W, Jiang N et al (2014) Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. Oxidative Med Cell Longev 2014:834502. https://doi.org/10.1155/2014/834502

    Article  Google Scholar 

  10. Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2:454–466. https://doi.org/10.1242/dmm.001941

    Article  CAS  PubMed  Google Scholar 

  11. Cha MY, Han SH, Son SM et al (2012) Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death. PLoS One 7(4):e34929. https://doi.org/10.1371/journal.pone.0034929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang J, Cornell JE, Van Remmen H et al (2007) Effect of aging and caloric restriction on the mitochondrial proteome. J Gerontol A Biol Sci Med Sci 62:223–234

    Article  Google Scholar 

  13. Chen Y, Zhang J, Lin Y et al (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12:534–541. https://doi.org/10.1038/embor.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng Y, Ren X, Gowda AS et al (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis 4:e731. https://doi.org/10.1038/cddis.2013.254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. https://doi.org/10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  16. Cimen H, Han MJ, Yang Y et al (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49(2):304–311. https://doi.org/10.1021/bi901627u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drazic A, Myklebust LM, Ree R et al (2016) The world of protein acetylation. Biochim Biophys Acta 1864(10):1372–1401. https://doi.org/10.1016/j.bbapap.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  18. Du J, Zhou Y, Su X et al (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809. https://doi.org/10.1126/science.1207861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernandes J, Weddle A, Kinter CS et al (2015) Lysine acetylation activates mitochondrial aconitase in the heart. Biochemistry 54(25):4008–4018. https://doi.org/10.1021/acs.biochem.5b00375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finley LW, Haas W, Desquiret-Dumas V et al (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6(8):e23295. https://doi.org/10.1371/journal.pone.0023295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finley LWS, Haigis MC (2012) Metabolic regulation by SIRT3: implications for tumorigenesis. Trends Mol Med 18(9):516–523. https://doi.org/10.1016/j.molmed.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frey N, Katus HA, Olson EN et al (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109(13):1580–1589. https://doi.org/10.1161/01.CIR.0000120390.68287.BB

    Article  PubMed  Google Scholar 

  23. Fucho R, Casals N, Serra D et al (2016) Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J 31(4):1263–1272. https://doi.org/10.1096/fj.201601156R

    Article  PubMed  Google Scholar 

  24. Gao J, Wang L, Liu J et al (2017) Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants (Basel) 6(2). pii: E25). https://doi.org/10.3390/antiox6020025

    Article  Google Scholar 

  25. Gil J, Ramírez-Torres A, Encarnación-Guevara S (2017) Lysine acetylation and cancer: a proteomics perspective. J Proteome 150:297–309. https://doi.org/10.1016/j.jprot.2016.10.003

    Article  CAS  Google Scholar 

  26. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606

    Article  CAS  Google Scholar 

  27. Hafner AV, Dai J, Gomes AP et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914–923. https://doi.org/10.18632/aging.100252

    Article  CAS  Google Scholar 

  28. Haigis MC, Deng CX, Finley LW et al (2012) SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res 72(10):2468–2472. https://doi.org/10.1158/0008-5472.CAN-11-3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 103(27):10230–10235. https://doi.org/10.1073/pnas.0604392103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hallows WC, Yu W, Smith BC et al (2011) Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 41(2):139–149. https://doi.org/10.1016/j.molcel.2011.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600. https://doi.org/10.1038/nrm1983

    Article  CAS  PubMed  Google Scholar 

  32. Hebert AS, Dittenhafer-Reed KE, Yu W et al (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49(1):186–199. https://doi.org/10.1016/j.molcel.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  33. Hirschey MD, Shimazu T, Goetzman E et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125. https://doi.org/10.1038/nature08778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirschey MD, Shimazu T, Jing E, Grueter CA et al (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44(2):177–190. https://doi.org/10.1016/j.molcel.2011.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hosp F, Lassowskat I, Santoro V et al (2017) Lysine acetylation in mitochondria: from inventory to function. Mitochondrion 33:58–71. https://doi.org/10.1016/j.mito.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  36. Hroudova J, Singh N, Fisar Z (2014) Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014:175062. https://doi.org/10.1155/2014/175062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacobs KM, Pennington JD, Bisht KS et al (2008) SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 4(5):291–299

    Article  CAS  Google Scholar 

  38. Jing E, Emanuelli B, Hirschey MD et al (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A 108(35):14608–14613. https://doi.org/10.1073/pnas.1111308108

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jing E, O’Neill BT, Rardin MJ et al (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62(10):3404–3417. https://doi.org/10.2337/db12-1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86(11):1107–1113

    Article  CAS  Google Scholar 

  41. Kendrick AA, Choudhury M, Rahman SM et al (2011) Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 433(3):505–514. https://doi.org/10.1042/BJ20100791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim SC, Sprung R, Chen Y et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618. https://doi.org/10.1016/j.molcel.2006.06.026

    Article  CAS  PubMed  Google Scholar 

  43. Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1a, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5(7):e11707. https://doi.org/10.1371/journal.pone.0011707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lahera V, de Las Heras N, López-Farré A et al (2017) Role of mitochondrial dysfunction in hypertension and obesity. Curr Hypertens Rep 19(2):11. https://doi.org/10.1007/s11906-017-0710-9

    Article  CAS  PubMed  Google Scholar 

  45. Lesnefsky EJ, Moghaddas S, Tandler B et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia – reperfusion, aging, and heart failure. J Mol Cell Cardiol 33(6):1065–1089. https://doi.org/10.1006/jmcc.2001.1378

    Article  CAS  PubMed  Google Scholar 

  46. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Peritore C, Ginsberg J et al (2015) SIRT3 attenuates MPTP-induced nigrostriatal degeneration via enhancing mitochondrial antioxidant capacity. Neurochem Res 40(3):600–608. https://doi.org/10.1007/s11064-014-1507-8

    Article  CAS  PubMed  Google Scholar 

  48. Lombard DB, Alt FW, Cheng HL et al (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27(24):8807–8814. https://doi.org/10.1128/MCB.01636-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu Z, Chen Y, Aponte AM et al (2015) Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function. J Biol Chem 290(4):2466–2476. https://doi.org/10.1074/jbc.M114.606228

    Article  CAS  PubMed  Google Scholar 

  50. Lundby A, Lage K, Weinert BT et al (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2(2):419–431. https://doi.org/10.1016/j.celrep.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinez-Vicente M (2017) Neuronal mitophagy in neurodegenerative diseases. Front Mol Neurosci 10:64. https://doi.org/10.3389/fnmol.2017.00064. eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Merry BJ (2004) Oxidative stress and mitochondrial function with aging: the effects of calorie restriction. Aging Cell 3(1):7–12

    Article  CAS  Google Scholar 

  53. Nakagawa T, Lomb DJ, Haigis MC et al (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137(3):560–570. https://doi.org/10.1016/j.cell.2009.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ozden O, Park SH, Wagner BA et al (2014) SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med 76:163–172. https://doi.org/10.1016/j.freeradbiomed.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paik WK, Pearson D, Lee HW et al (1970) Nonenzymatic acetylation of histones with acetyl-CoA. Biochim Biophys Acta 213:513–522

    Article  CAS  Google Scholar 

  56. Phillips DM (1963) The presence of acetyl groups of histones. Biochem J 87:258–263

    Article  CAS  Google Scholar 

  57. Picklo MJ (2008) Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem Biophys Res Commun 376(3):615–619. https://doi.org/10.1016/j.bbrc.2008.09.039

    Article  CAS  PubMed  Google Scholar 

  58. Qiu X, Brown K, Hirschey MD et al (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667. https://doi.org/10.1016/j.cmet.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  59. Rangarajan P, Karthikeyan A, Lu J et al (2015) Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience 311:398–414. https://doi.org/10.1016/j.neuroscience.2015.10.048

    Article  CAS  PubMed  Google Scholar 

  60. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  CAS  Google Scholar 

  61. Reinders J, Sickmann A (2007) Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng 24(2):169–177. https://doi.org/10.1016/j.bioeng.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  62. Rovira-Llopis S, Bañuls C, Diaz-Morales N et al (2017) Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol 11:637–645. https://doi.org/10.1016/j.redox.2017.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salvatori I, Valle C, Ferri A et al (2017) SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem Int pii S0197-0186(17):30141–30149. https://doi.org/10.1016/j.neuint.2017.04.012

    Article  CAS  Google Scholar 

  64. Schlicker C, Gertz M, Papatheodorou P et al (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 382(3):790–801. https://doi.org/10.1016/j.jmb.2008.07.048

    Article  CAS  PubMed  Google Scholar 

  65. Schwer B, Bunkenborg J, Verdin RO et al (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A 103(27):10224–10229. https://doi.org/10.1073/pnas.0603968103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwer B, Eckersdorff M, Li Y et al (2009) Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8(5):604–606. https://doi.org/10.1111/j.1474-9726.2009.00503.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shimazu T, Hirschey M, Hua L et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2, increases its enzymatic activity and regulates ketone body production. Cell Metab 12(6):654–661. https://doi.org/10.1016/j.cmet.2010.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shinmura K, Tamaki K, Sano M et al (2011) Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 109(4):396–406. https://doi.org/10.1161/CIRCRESAHA.111.243097

    Article  CAS  PubMed  Google Scholar 

  69. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63

    Article  CAS  Google Scholar 

  70. Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812. https://doi.org/10.1016/j.cell.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Srinivasan S, Guha M, Kashina A et al (2017) Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim Biophys Acta. pii: S0005-2728(17)30005-1. https://doi.org/10.1016/j.bbabio.2017.01.004

    Article  CAS  Google Scholar 

  72. Still AJ, Floyd BJ, Hebert AS et al (2013) Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J Biol Chem 288(36):26209–26219. https://doi.org/10.1074/jbc.M113.483396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sundaresan NR, Gupta M, Kim G et al (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771. https://doi.org/10.1172/JCI39162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sundaresan NR, Samant SA, Pillai VB et al (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28(20):6384–6401. https://doi.org/10.1128/MCB.00426-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Svinkina T, Gu H, Silva JC et al (2015) Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics 14(9):2429–2440. https://doi.org/10.1074/mcp.O114.047555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tao R, Coleman MC, Pennington JD et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40(6):893–904. https://doi.org/10.1016/j.molcel.2010.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tao R, Vassilopoulos A, Parisiadou L et al (2014) Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal 20(10):1646–1654. https://doi.org/10.1089/ars.2013.5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Torrens-Mas M, Pons DG, Sastre-Serra J et al (2017) SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production. J Cell Biochem 118(2):397–406. https://doi.org/10.1002/jcb.25653

    Article  CAS  PubMed  Google Scholar 

  79. Trotta AP, Chipuk JE (2017) Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 74(11):1999–2017. https://doi.org/10.1007/s00018-016-2451-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ungvari Z, Parrado-Fernandez C, Csiszar A et al (2008) Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 102(5):519–528. https://doi.org/10.1161/CIRCRESAHA.107.168369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vassilopoulos A, Pennington JD, Andresson T et al (2014) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal 21(4):551–564. https://doi.org/10.1089/ars.2013.5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vazquez EJ, Berthiaume JM, Kamath V et al (2015) Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc Res 107(4):453–465. https://doi.org/10.1093/cvr/cvv183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Verdin E, Hirschey MD, Finley LW et al (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675. https://doi.org/10.1016/j.tibs.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wada J, Nakatsuka A (2016) Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med Okayama 70(3):151–158

    CAS  PubMed  Google Scholar 

  85. Wagner GR, Payne RM (2013) Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 288(40):29036–29045. https://doi.org/10.1074/jbc.M113.486753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res Oct 111(9):1222–1236. https://doi.org/10.1161/CIRCRESAHA.112.265660

    Article  CAS  Google Scholar 

  87. Wang Q, Zhang Y, Yang C et al (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327(5968):1004–1007. https://doi.org/10.1126/science.1179687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weinert BT, Wagner SA, Horn H et al (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4(183):ra48. https://doi.org/10.1126/scisignal.2001902

    Article  CAS  PubMed  Google Scholar 

  89. Wu YT, Lee HC, Liao CC et al (2013) Regulation of mitochondrial F(o)F(1) ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim Biophys Acta 1832(1):216–227. https://doi.org/10.1016/j.bbadis.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  90. Xiong Y, Wang M, Zhao J et al (2016) Sirtuin 3: a Janus face in cancer (review). Int J Oncol 49(6):2227–2235. https://doi.org/10.3892/ijo.2016.3767

    Article  CAS  PubMed  Google Scholar 

  91. Xue L, Xu F, Meng L et al (2012) Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett 586(2):137–142. https://doi.org/10.1016/j.febslet.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  92. Yang Y, Cimen H, Han MJ et al (2010) NAD+-dependent deacetylase SIRT3 regulatesmitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem 285(10):7417–7429. https://doi.org/10.1074/jbc.M109.053421

    Article  CAS  PubMed  Google Scholar 

  93. Yang W, Nagasawa K, Münch C et al (2016) Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167(4):985–1000.e21. https://doi.org/10.1016/j.cell.2016.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Y, Bharathi SS, Rardin MJ et al (2015) SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS One 10(3):e0122297. https://doi.org/10.1371/journal.pone.0122297. eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang X, Ren X, Zhang Q et al (2016) PGC-1α/ERRα- Sirt3 pathway regulates DAergic neuronal death by directly deacetylating SOD2 and ATP synthase β. Antioxid Redox Signal 24(6):312–328. https://doi.org/10.1089/ars.2015.6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao S, Xu W, Jiang W et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. https://doi.org/10.1126/science.1179689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao Y, Yang H, Wang X et al (2013) Sirtuin-3 (SIRT3) expression is associated with overall survival in esophageal cancer. Ann Diagn Pathol 17(6):483–485. https://doi.org/10.1016/j.anndiagpath.2013.06.001

    Article  PubMed  Google Scholar 

  98. Zsurka G, Kunz WS (2013) Mitochondrial involvement in neurodegenerative diseases. IUBMB Life 65(3):263–272. https://doi.org/10.1002/iub.1126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Ciregia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciregia, F. (2019). Mitochondria Lysine Acetylation and Phenotypic Control. In: Urbani, A., Babu, M. (eds) Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, vol 1158. Springer, Singapore. https://doi.org/10.1007/978-981-13-8367-0_4

Download citation

Publish with us

Policies and ethics