Skip to main content

Heteroplasmy Shifting as Therapy for Mitochondrial Disorders

  • Chapter
  • First Online:
Mitochondria in Health and in Sickness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1158))

Abstract

Mitochondrial disease can arise due to pathogenic sequence variants in the mitochondrial DNA (mtDNA) that prevent cells from meeting their energy demands. Mitochondrial diseases are often fatal and currently there are no treatments directed towards the underlying cause of disease. Pathogenic variants in mtDNA often exist in a state of heteroplasmy, with coexistence of pathogenic and wild type mtDNA. The load of heteroplasmy, defined as the relative amount of pathogenic mtDNA to wild type mtDNA, corresponds to timing and symptom severity. Thus, changing the heteroplasmy load may lead to a shift in disease onset and symptom severity. Here we review techniques aimed at preventing inheritance of pathogenic mtDNA via mitochondrial replacement therapy (MRT) and strategies geared toward shifting of heteroplasmy in individuals with active mitochondrial disease. MRT strategies seek to create embryos with the nuclear genetic makeup of the intended parents and wild type mtDNA from a donor in order to avoid known maternal pathogenic variants. Heteroplasmy shift approaches in patients are of two categories: nuclease dependent and nuclease independent strategies. Despite initial success in mouse models and patient cells, these techniques have not reached clinical use. Translational attempts in this area are urgently needed to improve therapies for a currently untreatable set of disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a “differential multiple cleavage-site” model. Gene Ther 14(18):1309–1318. https://doi.org/10.1038/sj.gt.3302981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19(9):1111–1113. https://doi.org/10.1038/nm.3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bayona-bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. PNAS 102(40):14392–14397

    Article  CAS  Google Scholar 

  4. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415. https://doi.org/10.1093/nar/gkl655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106(1):135–159. https://doi.org/10.1093/bmb/ldt017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM et al (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465(7294):82–85. https://doi.org/10.1038/nature08958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crawford N, Prendergast D, Oehlert JW, Shaw GM, Stevenson DK, Rappaport N et al (2017) Divergent patterns of mitochondrial and nuclear ancestry are associated with the risk for preterm birth. J Pediatr 194:40–46.e4. https://doi.org/10.1016/j.jpeds.2017.10.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Laat P, Fleuren LHJ, Bekker MN, Smeitink JAM, Janssen MCH (2015) Obstetric complications in carriers of the m.3243A>G mutation, a retrospective cohort study on maternal and fetal outcome. Mitochondrion 25:98–103. https://doi.org/10.1016/j.mito.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  9. Dejean LM, Martinez-Caballero S, Kinnally KW (2006) Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 13(8):1387–1395. https://doi.org/10.1038/sj.cdd.4401949

    Article  CAS  PubMed  Google Scholar 

  10. Emani SM, McCully JD (2018) Mitochondrial transplantation: applications for pediatric patients with congenital heart disease. Transl Pediatr 7(2):169–175. https://doi.org/10.21037/tp.2018.02.02

    Article  PubMed  PubMed Central  Google Scholar 

  11. Emani SM, Piekarski BL, Harrild D, del Nido PJ, McCully JD (2017) Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154(1):286–289. https://doi.org/10.1016/j.jtcvs.2017.02.018

    Article  PubMed  Google Scholar 

  12. Falabella M, Kolesar JE, Xiang IM, Wang T, Horne W, Wallace C et al (2018) G-quadruplex dynamics contribute to epigenetic regulation of mitochondrial function. BioRXiv. https://doi.org/10.1101/359703

  13. Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE et al (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319(5865):958–962. https://doi.org/10.1126/science.1147786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gammage PA, Moraes CT, Minczuk M (2017) Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet 34(2):101–110. https://doi.org/10.1016/j.tig.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  15. Gershoni M, Levin L, Ovadia O, Toiw Y, Shani N, Dadon S et al (2014) Disrupting mitochondrial-nuclear coevolution affects OXPHOS complex i integrity and impacts human health. Genome Biol Evol 6(10):2665–2680. https://doi.org/10.1093/gbe/evu208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF (2017) Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol 35(11):1059–1068. https://doi.org/10.1038/nbt.3997

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton ML, Guo Z, Fuller CD, Van Remmen H, Ward WF, Austad SN et al (2001) A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res 29(10):2117–2126. https://doi.org/10.1093/nar/29.10.2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A et al (2016) G-quadruplex structures mark human regulatory chromatin. Nat Genet 48(10):1267–1272. https://doi.org/10.1038/ng.3662

    Article  CAS  PubMed  Google Scholar 

  19. Herbert M, Turnbull D (2018) Progress in mitochondrial replacement therapies. Nat Rev Mol Cell Biol 19(2):71–72. https://doi.org/10.1038/nrm.2018.3

    Article  CAS  PubMed  Google Scholar 

  20. Jo A, Ham S, Lee GH, Lee Y, Kim S, Lee Y et al (2015) Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int 201.(Article ID 305716:1–10. https://doi.org/10.1155/2015/305716

    Article  CAS  Google Scholar 

  21. Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K et al (2016) Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540(7632):270–275. https://doi.org/10.1038/nature20592

    Article  CAS  PubMed  Google Scholar 

  22. Kaufman BA, Van Houten B (2017) POLB: a new role of DNA polymerase beta in mitochondrial base excision repair. DNA Repair 60.(November:A1–A5. https://doi.org/10.1016/j.dnarep.2017.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13(10):659–671. https://doi.org/10.1038/nrm3439

    Article  CAS  PubMed  Google Scholar 

  24. Kim Y-G, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93.(February:1156–1160

    Article  CAS  Google Scholar 

  25. Kirkman MA, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis K, De Coo IF et al (2009) Gene-environment interactions in Leber hereditary optic neuropathy. Brain 132(9):2317–2326. https://doi.org/10.1093/brain/awp158

    Article  PubMed  PubMed Central  Google Scholar 

  26. Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco AV, Sánchez-Cabo F, Torroja C, Acín-Pérez R et al (2016) Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535(7613):561–565. https://doi.org/10.1038/nature18618

    Article  CAS  PubMed  Google Scholar 

  27. Lesnefsky EJ, Chen Q, Slabe TJ, Stoll MSK, Minkler PE, Hassan MO et al (2004) Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am J Physiol Heart Circ Physiol 287(1):H258–H267. https://doi.org/10.1152/ajpheart.00348.2003

    Article  CAS  PubMed  Google Scholar 

  28. Lin Y-F, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM (2016) Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533(7603):1–8. https://doi.org/10.1038/nature17989

    Article  CAS  Google Scholar 

  29. Ma H, O’Neil RC, Marti Gutierrez N, Hariharan M, Zhang ZZ, He Y et al (2017) Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20(1):112–119. https://doi.org/10.1016/j.stem.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  30. Malarky MA (2017, August 4). Retrieved October 4, 2018, from https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/ComplianceActivities/Enforcement/UntitledLetters/UCM570225.pdf

  31. Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. AJP: Heart Circ Physiol 304(7):H966–H982. https://doi.org/10.1152/ajpheart.00883.2012

    Article  CAS  Google Scholar 

  32. Matthew Liao S (2017) Do mitochondrial replacement techniques affect qualitative or numerical identity? Bioethics 31(1):20–26. https://doi.org/10.1111/bioe.12308

    Article  PubMed  Google Scholar 

  33. McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S (2009) Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Phys Heart Circ Phys 296(1):H94–H105. https://doi.org/10.1152/ajpheart.00567.2008

    Article  CAS  Google Scholar 

  34. Melber A, Haynes CM (2018) UPR mt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28(3):281–295. https://doi.org/10.1038/cr.2018.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rahman S, Poulton J, Marchington D, Suomalainen A (2001) Decrease of 3243 A→G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am J Hum Genet 68(1):238–240. https://doi.org/10.1086/316930

    Article  CAS  PubMed  Google Scholar 

  37. Reardon S (2017) Genetic details of controversial “three-parent baby” revealed. Nature 544:17–18. https://doi.org/10.1038/nature.2017.21761

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA (2007) Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 35(2):235–242. https://doi.org/10.1002/mus.20688

    Article  CAS  PubMed  Google Scholar 

  39. Ross JM, Stewart JB, Hagström E, Brené S, Mourier A, Coppotelli G et al (2013) Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501(7467):412–415. https://doi.org/10.1038/nature12474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Røyrvik EC, Burgstaller JP, Johnston IG (2016) mtDNA diversity in human populations highlights the merit of haplotype matching in gene therapies. Mol Hum Reprod 22(11):809–817. https://doi.org/10.1093/molehr/gaw062

    Article  CAS  PubMed  Google Scholar 

  41. Saneto RP, Sedensky MM (2013) Mitochondrial disease in childhood: MtDNA encoded. Neurotherapeutics 10(2):199–211. https://doi.org/10.1007/s13311-012-0167-0

    Article  CAS  PubMed  Google Scholar 

  42. Santorelli FM, Shanske S, Macaya A, DeVivo DC, DiMauro S (1993) The mutation at nt 8993 of mitochondrial DNA is a common cause of Leigh’s syndrome. Ann Neurol 34(6):827–834. https://doi.org/10.1002/ana.410340612

    Article  CAS  PubMed  Google Scholar 

  43. Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW et al (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63(1):35–39. https://doi.org/10.1002/ana.21217

    Article  CAS  PubMed  Google Scholar 

  44. Smith PM, Lightowlers RN (2011) Altering the balance between healthy and mutated mitochondrial DNA. J Inherit Metab Dis 34(2):309–313. https://doi.org/10.1007/s10545-010-9122-6

    Article  CAS  PubMed  Google Scholar 

  45. Sondheimer N, Glatz CE, Tirone JE, Deardorff MA, Krieger AM, Hakonarson H (2011) Neutral mitochondrial heteroplasmy and the influence of aging. Hum Mol Genet 20(8):1653–1659. https://doi.org/10.1093/hmg/ddr043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stein A, Sia EA (2017) Mitochondrial DNA repair and damage tolerance. Front Biosci (Landmark Edition) 22:920–943. Retrieved fromhttp://www.ncbi.nlm.nih.gov/pubmed/27814655

    Article  CAS  Google Scholar 

  47. Sue CM, Quigley A, Katsabanis S, Kapsa R, Crimmins DS, Byrne E, Morris JGL (1998) Detection of MELAS A3243G point mutation in muscle, blood and hair follicles. J Neurol Sci 161(1):36–39. https://doi.org/10.1016/S0022-510X(98)00179-8

    Article  CAS  PubMed  Google Scholar 

  48. Suissa S, Wang Z, Poole J, Wittkopp S, Feder J, Shutt TE et al (2009) Ancient mtDNA genetic variants modulate mtDNA transcription and replication. PLoS Genetics 5(5). https://doi.org/10.1371/journal.pgen.1000474

    Article  Google Scholar 

  49. Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H et al (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493(7434):627–631. https://doi.org/10.1038/nature11647

    Article  CAS  PubMed  Google Scholar 

  50. Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA (1999) Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 8(6):1047–1052

    Article  CAS  Google Scholar 

  51. Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ et al (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129(12):3391–3401. https://doi.org/10.1093/brain/awl282

    Article  PubMed  Google Scholar 

  52. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402. https://doi.org/10.1038/nrg1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Viscomi C, Bottani E, Zeviani M (2015) Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta Bioenerg 1847(6–7):544–557. https://doi.org/10.1016/j.bbabio.2015.03.001

    Article  CAS  Google Scholar 

  54. Watts G, Braude P, Flinter F, Harding S, Lewens T, Parker M (2012) Novel techniques for the prevention of mitochondrial DNA disorders: an ethical review. Nuffield Council on Bioethics, London

    Google Scholar 

  55. Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, Zhu J (2014) Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell 157(7):1591–1604. https://doi.org/10.1016/j.cell.2014.04.042

    Article  CAS  PubMed  Google Scholar 

  56. Wonnapinij P, Chinnery PF, Samuels DC (2008) The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. Am J Hum Genet 83(5):582–593. https://doi.org/10.1016/j.ajhg.2008.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamada M, Emmanuele V, Sanchez-Quintero MJ, Sun B, Lallos G, Paull D et al (2016) Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18(6):749–754. https://doi.org/10.1016/j.stem.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  58. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14. https://doi.org/10.1038/nrm3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z et al (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 35(6):750. https://doi.org/10.1016/j.rbmo.2017.07.008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Sondheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naeem, M.M., Sondheimer, N. (2019). Heteroplasmy Shifting as Therapy for Mitochondrial Disorders. In: Urbani, A., Babu, M. (eds) Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, vol 1158. Springer, Singapore. https://doi.org/10.1007/978-981-13-8367-0_14

Download citation

Publish with us

Policies and ethics