Skip to main content

Lessons Learned from the Chernobyl Accident

  • Chapter
  • First Online:
Nuclear Emergencies
  • 745 Accesses

Abstract

This chapter describes the lessons learned from the Chernobyl accident on the basis of practical experience. Main characteristics of radionuclides release and consequences of radiological contamination of the environment, and also remediation actions, taken to protect workers and population against radiation at different stages of rectification of the consequences of the accident in Belarus, Russia, and Ukraine in 1986–2018 are analyzed. Criteria for applying countermeasures, such as maximum expected effective irradiation dose for the population and terrestrial density of radionuclides contamination for evacuation and resettlement, restriction of business activities, etc., and also action level of radionuclides in food to reduce the internal dose, are provided. Main positive and negative features of the decisions taken in the process of the Chernobyl nuclear disaster elimination are considered. Practically all agricultural countermeasures implemented in the large scale on contaminated lands after Chernobyl accident can be recommended for use in case of future accidents. We focus mainly on the Chernobyl exclusion zone as the territory of radiation-ecological reserves of Ukraine and Belarus for scientific research in the field of radioecology and radiobiology, as well as on the most contaminated 10-km zone around the Chernobyl nuclear power plant—a Zone for special industrial usage, not suitable for living in the near future.

By an example of the Chernobyl disaster, it is shown that in comparison with radiological consequences the socio-psychological ones have made much more influence on human life and health due to lack of urgent, objective, and truthful information on the accident and its impact on the health, in mass media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IAEA. Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the Chernobyl forum expert group ‘environment’. Vienna: IAEA; 2006.

    Google Scholar 

  2. Kashparov VA, Ivanov YA, Zvarich SI, Protsak VP, Khomutinin YV, Kurepin AD, Pazukhin EM. Formation of hot particles during the Chernobyl nuclear power plant accident. Nucl Technol. 1996;114:246–53. https://doi.org/10.13182/NT96-A35253.

    Article  CAS  Google Scholar 

  3. Kashparov VA, Lundin SM, Khomutinin YV, Kaminsky SP, Levtchuk SE, Protsak VP, Kadygrib AM, Zvarich SI, Yoschenko VI, Tschiersch J. Soil contamination with 90Sr in the near zone of the Chernobyl accident. J Environ Radioact. 2001;56:285–98. https://doi.org/10.1016/S0265-931X(00)00207-1.

    Article  CAS  PubMed  Google Scholar 

  4. Kashparov VA, Lundin SM, Zvarich SI, Yoschenko VI, Levtchuk SE, Khomutinin YV, Maloshtan IN, Protsak VP. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ. 2003;317:105–19. https://doi.org/10.1016/S0048-9697(03)00336-X.

    Article  CAS  PubMed  Google Scholar 

  5. Steinhauser G, Brandl A, Johnson TE. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ. 2014;470–471:800–17. https://doi.org/10.1016/j.scitotenv.2013.10.029.

    Article  CAS  Google Scholar 

  6. UNSCEAR. Sources and effects of ionizing radiation (annex D). New York: United Nations; 2008.

    Google Scholar 

  7. Kashparov V, Levchuk S, Zhurba M, Protsak V, Khomutinin Y, Beresford NA, Chaplow JS. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl exclusion zone. ESSD. 2018;10:339–53. https://doi.org/10.5194/essd-10-339-2018.

    Article  Google Scholar 

  8. Kashparov VA. Hot particles at Chernobyl. Environ Sci Pollut Res. 2003;10(1):21–30. https://doi.org/10.1007/BF02980879.

    Article  Google Scholar 

  9. Kuriny VD, Ivanov YA, Kashparov VA, Loshchilov NA, Protsak VP, Yudin EB, Zhyrba MA, Parshakov AE. Particle-associated Chernobyl fall-out in the local and intermediate zones. Ann Nucl Energy. 1993;20(6):415–20.

    Article  CAS  Google Scholar 

  10. Salbu B, Kashparov V, Lind OC, Garcia-Tenorio R, Johansen MP, Child DP, Roos P, Sancho CM. Challenges associated with the behaviour of radioactive particles in the environment. J Environ Radioact. 2018;186(1):101–15. https://doi.org/10.1016/j.jenvrad.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  11. Kashparov VA, Oughton DH, Zvarich SI, Protsak VP, Levchuk SE. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30-km exclusion zone. Health Phys. 1999;76:251–9.

    Article  CAS  Google Scholar 

  12. Kashparov VA, Protsak VP, Ahamdach N, Stammose D, Peres JM, Yoschenko VI, Zvarich SI. Dissolution kinetics of particles of irradiated Chernobyl nuclear fuel: influence of pH and oxidation state on the release of radionuclides in the contaminated soil of Chernobyl. J Nucl Mater. 2000;279:225–33.

    Article  CAS  Google Scholar 

  13. Kashparov VA, Ahamdach N, Zvarich SI, Yoschenko VI, Maloshtan IN, Dewiere L. Kinetics of dissolution of Chernobyl fuel particles in soil in natural conditions. J Environ Radioact. 2004;72:335–53. https://doi.org/10.1016/j.jenvrad.2003.08.002.

    Article  CAS  PubMed  Google Scholar 

  14. Fesenko SV, Alexakhin RM, Balonov MI, Bogdevich IM, Howard BJ, Kashparov VA, Sanzharova NI, Panov AV, Voigt G, Zhuchenka YM. Twenty years’ application of agricultural countermeasures following the Chernobyl accident: lessons learned. J Radiol Prot. 2006;26:351–9. https://doi.org/10.1088/0952-4746/26/4/R01.

    Article  CAS  PubMed  Google Scholar 

  15. Fesenko SV, Alexakhin RM, Balonov MI, Bogdevitch IM, Howard BJ, Kashparov VA, Sanzharova NI, Panov AV, Voigt G, Zhuchenka YM. An extended critical review of twenty years of countermeasures used in agriculture after the Chernobyl accident. Sci Total Environ. 2007;383(1):1–24. https://doi.org/10.1016/j.scitotenv.2007.05.011.

    Article  CAS  PubMed  Google Scholar 

  16. Balonov M, Kashparov V, Nikolaenko E, Berkovsky V, Fesenko S. Harmonization of standards for permissible radionuclide activity concentrations in foodstuffs in the long term after the Chernobyl accident. J Radiol Prot. 2018;38:854–67. https://doi.org/10.1088/1361-6498/aabe34.

    Article  CAS  PubMed  Google Scholar 

  17. IAEA. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports series no. 472. Vienna: IAEA; 2010.

    Google Scholar 

  18. Bazyka DA, Tronko MD, Antypkin YG, Serdiuk A, Sushko VO, editors. Thirty years of Chornobyl catastrophe: radiological and health effects: national report of Ukraine, National Academy of Medical Sciences of Ukraine, National Research Centre for Radiation Medicine, Kyiv, Ukraine. 2016. https://drive.google.com/file/d/0B1bUIW1YACgZelRkWmhEMVVIdGc/view.

  19. Kashparov V, Levchuk S, Khomutynyn Y, Morozova V, Znurba M. Report of UIAR. Chernobyl: 30 years of radioactive contamination legacy. Kiev: UIAR of NUBiP of Ukraine, Commissioned by Greenpeace Belgium; 2016.

    Google Scholar 

  20. Verkhovna Rada of Ukraine. On the legal regime of the territories exposed to radioactive contamination in consequence of the catastrophe at the Chernobyl NPP. Kyiv: Bulletin of Verkhovna Rada; 1991. p. 16.

    Google Scholar 

  21. Labunska I, Kashparov V, Levchuk S, Santillo D, Johnston P, Polishchuk S, Lazarev N, Khomutinin Y. Current radiological situation in areas of Ukraine contaminated by the Chernobyl accident: part 1. Human dietary exposure to Caesium-137 and possible mitigation measures. Environ Int. 2018;117:250–9. https://doi.org/10.1016/j.envint.2018.04.053.

    Article  CAS  PubMed  Google Scholar 

  22. Maloshtan I, Polishchuk S, Kashparov V, Yoschenko V. Assessment of radiological efficiency of countermeasures on peat-bog soils of Ukrainian Polissya. J Environ Radioact. 2017;175–176:52–9. https://doi.org/10.1016/j.jenvrad.2017.03.026.

    Article  CAS  PubMed  Google Scholar 

  23. Lihtarov IA, Kovgan LM, Vasylenko VV. General dosimetry certification and results of whole body counter monitoring in the settlements contaminated after the Chernobyl accident. Data on 2012. Collection 15 (in Ukrainian). Kyiv: Ministry of Health Protection of Ukraine; 2013.

    Google Scholar 

  24. Izrael Y, Bogdevich I, editors. The atlas of recent and predictable aspects of consequences of Chernobyl accident on polluted territories of Russia and Belarus (ARPA Russia-Belarus). Moscow-Minsk: Foundation “Infosphere” - NIA-Nature; 2009.

    Google Scholar 

  25. UIAR. 2018. www.uiar.org.ua/Eng/nine_milk.htm.

  26. Kashparov V, Lazarev N, Polishchuk S. Current problems of agricultural radiology in Ukraine. Agroecol J. 2005;3:31–41.

    Google Scholar 

  27. Fesenko S, Jacob P, Ulanovsky A, Chupov A, Bogdevich I, Sanzharova N, Kashparov V, Panov A, Zhuchenka Y. Justification of remediation strategies in the long term after the Chernobyl accident. J Environ Radioact. 2013;119:39–47. https://doi.org/10.1016/j.jenvrad.2010.08.012.

    Article  CAS  PubMed  Google Scholar 

  28. Jacob P, Fesenko S, Bogdevitch I, Kashparov V, Sanzharova N, Grebenshikova N, Isamov N, Lazarev N, Panov A, Ulanovsky A, Zhuchenk Y, Zhurba M. Rural areas affected by the Chernobyl accident: radiation exposure and remediation strategies. Sci Total Environ. 2009;408(1):14–25. https://doi.org/10.1016/j.scitotenv.2009.09.006.

    Article  CAS  PubMed  Google Scholar 

  29. Ulanovsky A, Jacob P, Fesenko S, Bogdevitch I, Kashparov V, Sanzharova N. ReSCA: decision support tool for remediation planning after the Chernobyl accident. Radiat Environ Biophys. 2011;50:67–83. https://doi.org/10.1007/s00411-010-0344-7.

    Article  CAS  PubMed  Google Scholar 

  30. MEU. Twenty-five years after Chornobyl accident: safety for the future. National Report of Ukraine. Ministry of Emergencies of Ukraine. Kyiv: KIM; 2011.

    Google Scholar 

  31. Kashparov VA, Protsak VP, Ivanov YA, Nicholson KW. Resuspension of radionuclides and the contamination of village areas around Chernobyl. J Aerosol Sci. 1994;25(5):755–9.

    Article  CAS  Google Scholar 

  32. Kashparov VA, Protsak VP, Yoschenko VI, Watterson JD. Inhalation of radionuclides during agricultural work in areas contaminated as a result of the Chernobyl reactor accident. J Aerosol Sci. 1994;25(5):761–6.

    Article  CAS  Google Scholar 

  33. Mamikhin S, Tikhomirov F, Shcheglov A. Dynamics of 137Cs in the forests of the 30-km zone around the Chernobyl nuclear power plant. Sci Total Environ. 1997;193:169–77.

    Article  CAS  Google Scholar 

  34. Shcheglov A, Tsvetnova O, Klyashtorin A. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems. Long-term dynamics of the migration processes. J Geochem Explor. 2014;144:260–6.

    Article  CAS  Google Scholar 

  35. Thiry Y, et al. Impact of Scots pine (Pinus sylvestris L.) plantings on long term 137Cs and 90Sr recycling from a waste burial site in the Chernobyl Red Forest. J Environ Radioact. 2009;100:1062–8.

    Article  CAS  Google Scholar 

  36. Yoschenko V, Ohkubo T, Kashparov V. Radioactive contaminated forests in Fukushima and Chernobyl. J For Res. 2017;23:1–12. https://doi.org/10.1080/13416979.2017.1356681.

    Article  CAS  Google Scholar 

  37. Bugai D, Kashparov V, Dewiére L, Khomutinin Y, Levchuk S, Yoschenko V. Characterization of subsurface geometry and radioactivity distribution in the trench containing Chernobyl clean-up wastes. Environ Geol. 2005;47:869–81.

    Article  CAS  Google Scholar 

  38. Kashparov V, Yoschenko V, Levchuk S, Bugai D, Van Meir N, Simonucci C, Martin-Garin A. Radionuclide migration in the experimental polygon of the red Forest waste site in the Chernobyl zone – part 1: characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota. Appl Geochem. 2012;27:1348–58. https://doi.org/10.1016/j.apgeochem.2011.11.004.

    Article  CAS  Google Scholar 

  39. Evangeliou N, Zibtsev S, Myroniuk V, Zhurba M, Hamburger T, Stohl A, Balkanski Y, Paugam R, Mousseau TA, Møller AP, Kireev SI. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl nuclear power plant in 2015: an impact assessment. Sci Rep. 2016;6:26062. https://www.nature.com/articles/srep26062.

    Article  CAS  Google Scholar 

  40. Kashparov V, Zhurba MA, Kireev SI, Zibtsev SV, Myroniuk VV. Evaluation of the expected doses of fire brigades at the Chornobyl exclusion zone in April 2015. Nucl Phys Atom Energy. 2015;16(4):399–407. http://jnpae.kinr.kiev.ua/16.4/Articles_PDF/jnpae-2015-16-0399-Kashparov.pdf.

    Article  Google Scholar 

  41. Kashparov V, Myronіuk VV, Zhurba MA, Zibtsev SV, Glukhovskiy AS, Zhukova OM. Radiological consequences of the fire in the Chernobyl exclusion zone in April 2015. Radiat Biol Radioecol. 2017;57(5):512–27.

    Google Scholar 

  42. Kashparov V, et al. Forest fires in the territory contaminated as a result of the Chernobyl accident: radioactive aerosol resuspension and exposure of firefighters. J Environ Radioact. 2000;51:281–98.

    Article  CAS  Google Scholar 

  43. Yoschenko VI, Kashparov VA, Protsak VP, Lundin SM, Levchuk SE, Kadygrib AM, Zvarich SI, Khomutinin YV, Maloshtan IM, Lanshin VP, Kovtun MV, Tschiersch J. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments. J Environ Radioact. 2006;86(2):143–63. https://doi.org/10.1016/j.jenvrad.2005.08.003.

    Article  CAS  PubMed  Google Scholar 

  44. Yoschenko VI, Kashparov VA, Levchuk SE, Glukhovskiy AS, Khomutinin YV, Protsak VP, Lundin SM, Tschiersch J. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process. J Environ Radioact. 2006;87(3):260–78. https://doi.org/10.1016/j.jenvrad.2005.12.003.

    Article  CAS  PubMed  Google Scholar 

  45. Dewiere L, Bugai D, Kashparov V, Barthès V. Validation of the global model for 90Sr migration from the waste burial in the Chernobyl exclusion zone. Radioprotection. 2005;40(1):S245–51.

    Article  Google Scholar 

  46. Levchuk S, Kashparov V, Maloshtan I, Yoschenko V, Van Meir N. Migration of transuranic elements in groundwater from the near-surface radioactive waste site. Appl Geochem. 2012;27(7):1339–47. https://doi.org/10.1016/j.apgeochem.2012.01.002.

    Article  CAS  Google Scholar 

  47. Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S. Soil-to-plant halogens transfer studies 1. Root uptake of radioiodine by plants. J Environ Radioact. 2005;79(2):187–204. https://doi.org/10.1016/j.jenvrad.2004.06.005.

    Article  CAS  PubMed  Google Scholar 

  48. Kashparov V, Colle C, Zvarich S, Yoschenko V, Levchuk S, Lundin S. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants. J Environ Radioact. 2005;79(3):233–53. https://doi.org/10.1016/j.jenvrad.2004.07.001.

    Article  CAS  PubMed  Google Scholar 

  49. Beresford NA, Barnett CL, Gashchak S, Maksimenko A, Guliaichenko E, Woodb MD, Izquierdo M. Radionuclide transfer to wildlife at a ‘reference site’ in the Chernobyl exclusion zone and resultant radiation exposures. J Environ Radioact. 2018. (In press). https://doi.org/10.1016/j.jenvrad.2018.02.007.

  50. Fuller N, Smith JT, Nagorskaya LL, Gudkov DI, Ford AT. Does Chernobyl-derived radiation impact the developmental stability of Asellus aquaticus 30 years on? Sci Total Environ. 2017;576:242–50. https://doi.org/10.1016/j.scitotenv.2016.10.097.

    Article  CAS  PubMed  Google Scholar 

  51. Fuller N, Ford AT, Nagorskaya LL, Gudkov DI, Smith JT. Reproduction in the freshwater crustacean Asellus aquaticus along a gradient of radionuclide contamination at Chernobyl. Sci Total Environ. 2018;628–629:11–7. https://doi.org/10.1016/j.scitotenv.2018.01.309.

    Article  CAS  PubMed  Google Scholar 

  52. Geras’kin S. Ecological effects of exposure to enhanced levels of ionizing radiation. J Environ Radioact. 2016;162–163:347–57. https://doi.org/10.1016/j.jenvrad.2016.06.012.

    Article  CAS  PubMed  Google Scholar 

  53. Geras’kin S, Volkova P. Genetic diversity in Scots pine populations along a radiation exposure gradient. Sci Total Environ. 2014;496:317–27. https://doi.org/10.1016/j.scitotenv.2014.07.020.

    Article  CAS  PubMed  Google Scholar 

  54. Kashparova E, Levchuk S, Morozova V, Kashparov V. A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl exclusion zone. J Environ Radioact. 2018. (In press). https://doi.org/10.1016/j.jenvrad.2018.05.015.

  55. Morozova VS, Kashparov VA, Levchuk SY, Umanska AO, Bishchuk YV, Otreshko LM. The functional state of cellular antioxidant defence system of shoots of Arabidopsis Thaliana exposed to the chronic ionizing radiation in the Chornobyl exclusion zone. Nucl Phys Atom Energy. 2016;17(3):302–7.. http://jnpae.kinr.kiev.ua/17.3/Articles_PDF/jnpae-2016-17-0302-Morozova.pdf

    Article  Google Scholar 

  56. Yoschenko V, Kashparov V, Melnychuk M, Levchuk S, Bondar Y, Lazarev M, Yoschenko M, Farfán E, Jannik G. Chronic irradiation of scots pine trees (Pinus sylvestris) in the Chernobyl exclusion zone: dosimetry and radiobiological effects. Health Phys. 2011;101:393–408. https://doi.org/10.1097/HP.0b013e3182118094.

    Article  CAS  PubMed  Google Scholar 

  57. Henner P, Hurtevent P, Thiry Y, Levchuk S, Yoschenko V, Kashparov V. Translocation of 125I, 75Se and 36Cl to edible parts of radish, potato and green bean following wet foliar contamination under field conditions. J Environ Radioact. 2013;124:171–84. https://doi.org/10.1016/j.jenvrad.2013.05.012.

    Article  CAS  PubMed  Google Scholar 

  58. Hurtevent P, Thiry Y, Levchuk S, Yoschenko V, Henner P, Madoz-Escande C, Leclerc E, Colle C, Kashparov V. Translocation of 125I, 75Se and 36Cl to wheat edible parts following wet foliar contamination under field conditions. J Environ Radioact. 2013;121:43–54. https://doi.org/10.1016/j.jenvrad.2012.04.013.

    Article  CAS  PubMed  Google Scholar 

  59. Kashparov V, Colle C, Levchuk S, Yoschenko V, Zvarich S. Radiochlorine concentration ratios for agricultural plants in various soil conditions. J Environ Radioact. 2007;95(1):10–22. https://doi.org/10.1016/j.jenvrad.2007.01.008.

    Article  CAS  PubMed  Google Scholar 

  60. Kashparov V, Colle C, Levchuk S, Yoschenko V, Svydynuk N. Transfer of chlorine from the environment to agricultural foodstuffs. J Environ Radioact. 2007;94(1):1–15. https://doi.org/10.1016/j.jenvrad.2006.12.006.

    Article  CAS  PubMed  Google Scholar 

  61. Roux C, Le Gal La Salle C, Simonucci C, Van Meir N, Fifield LK, Diez O, Bassot S, Simler R, Bugai D, Kashparov V, Lancelot J. High 36Cl/Cl ratios in Chernobyl groundwater. J Environ Radioact. 2014;138:19–32. https://doi.org/10.1016/j.jenvrad.2014.07.008.

    Article  CAS  PubMed  Google Scholar 

  62. Sheppard SC. An index of radioecology, what has been important. J Environ Radioact. 2003;68:1–10.

    Article  CAS  Google Scholar 

  63. Ivanov V. Likvidatory. Radiologicheskiye posledstviya Chernobylya – Tsentr sodeystviya sotsial’no-ekologicheskim initsiativam atomnoy otrasli. 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashparov, V. (2019). Lessons Learned from the Chernobyl Accident. In: Steinhauser, G., Koizumi, A., Shozugawa, K. (eds) Nuclear Emergencies. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8327-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8327-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8326-7

  • Online ISBN: 978-981-13-8327-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics