Skip to main content

Microbial Diversity and Dynamics in Hydrocarbon Resource Environments

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Hydrocarbon resource environments consist of oil reservoirs, oil sands, coal bed methane, and any other geological environment where fossil fuels are found. These reserves have diverse in situ physicochemical conditions where many indigenous microbial communities are present, if conditions are not too drastic for their growth and survival. The physical, chemical, and microbiological processes that govern the activity of these communities must be understood for optimal and economic exploitation. This chapter provides a comprehensive overview of the microbial ecology of oil reservoirs, oil sands, and coal bed methane. The diversity of several important groups such as sulfate-reducing and nitrate-reducing bacteria, methanogens, hyperthermophiles, and fermentative bacteria is discussed to illustrate the diverse and dynamic nature of the resident microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    Article  CAS  Google Scholar 

  • Agrawal A, Lal B (2009) Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 69:301–312

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Vanbroekhoven K, Lal B (2010) Diversity of culturable sulfidogenic bacteria in two oil-water separation tanks in the north-eastern oil fields of India. Anaerobe 16(1):12–18

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Park HS, Nathoo S, Gieg LM, Jack TR, Miner K (2012) Toluene depletion in produced oil contributes to souring control in a field subjected to nitrate injection. Environ Sci Technol 46:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, An D, Cavallaro A, Voordouw G (2014) Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields. Appl Microbiol Biotechnol 98:8017–8029

    Article  CAS  PubMed  Google Scholar 

  • An D, Brown D, Chatterjee I, Dong X, Ramos-Padron E, Wilson S (2012) Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome 56:612–618

    Article  CAS  Google Scholar 

  • Armstrong SM, Sankey BM, Voordouw G (1995) Conversion of dibenzothiophene to biphenyl by sulfate-reducing bacteria isolated from oil field production facilities. Biotechnol Lett 17(10):1133–1136

    Article  CAS  Google Scholar 

  • Baker K, Herson D (1994) Bioremediation of surface and subsurface soils. In: Baker KH, Herson DS (eds) Bioremediation. McGraw-Hill, New York, pp 203–259

    Google Scholar 

  • Barnhart EP, Weeks EP, Jones EJP, Ritter DJ, McIntosh JC, Clark AC (2016) Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed. Int J Coal Geol 162:14–26

    Article  CAS  Google Scholar 

  • Barth T (1991) Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl Geochem 6(1):1–15

    Article  CAS  Google Scholar 

  • Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24

    Article  CAS  PubMed  Google Scholar 

  • Belyaev SS, Obraztsova AY, Laurinavichus KS, Bezrukova LV (1986) Characteristics of rod-shaped methane-producing bacteria from oil pool and description of Methanobacterium ivanovii. Microbiology 55(6):821–826

    Google Scholar 

  • Berdugo-Clavijo C, Gieg LM (2014) Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front Microbiol 5:197–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhupathiraju VK, Knapp RM (1993) Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol J 11:19–34

    Article  Google Scholar 

  • Bhupathiraju VK, Sharma PK, Mcinerney MJ, Knapp RM, Fowler K, Jenkins W (1991) Ch. R-7 isolation and characterization of novel halophilic anaerobic bacteria from oil field brines. Dev Pet Sci 31:131–143

    Google Scholar 

  • Bhupathiraju VK, Oren A, Sharma PK, Tanner RS, Woese CR, Mcinerney MJ (1994) Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int J Syst Bacteriol 44:565–572

    Article  CAS  PubMed  Google Scholar 

  • Bhupathiraju VK, McInerney MJ, Woese CR, Tanner RS (1999) Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int J Syst Bacteriol 3:953–960

    Article  Google Scholar 

  • Birkeland NK (2005) Sulfate-reducing bacteria and archaea. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 35–54

    Chapter  Google Scholar 

  • Bødtker G, Thorstenson T, Lillebø BLP, Thorbjørnsen BE, Ulvøen RH, Sunde E (2008) The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. J Ind Microbiol Biotechnol 35:1625–1636

    Article  PubMed  CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69(10):6143–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakstad OG, Lødeng AGG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103

    Article  CAS  PubMed  Google Scholar 

  • Callbeck CM, Dong X, Chatterjee I, Agrawal A, Caffrey SM, Sensen CW (2011) Microbial community succession in a bioreactor modeling a souring low-temperature oil reservoir subjected to nitrate injection. Appl Microbiol Biotechnol 91:799–810

    Article  CAS  PubMed  Google Scholar 

  • Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters impilcations for origin of natural gas. AAPG Bull 62:2441–2453

    CAS  Google Scholar 

  • Cayol JL, Ollivier B, Patel BK, Ravot G, Magot M, Ageron E (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended descrip. Int J Syst Bacteriol 45:783–789

    Article  CAS  PubMed  Google Scholar 

  • Chalaturnyk RJ, Scott JD, Özüm B (2002) Management of oil sands tailings. Pet Sci Technol 20(9–10):1025–1046

    Article  CAS  Google Scholar 

  • Chen L, Le Gall J, Xavier AV (1994) Purification, characterization and properties of an NADH oxidase from Desulfovibrio vulgaris (Hildenborough) and its coupling to adenylyl phosphosulfate reductase. Biochem Biophys Res Commun 203:839–844

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the shengli oil field. Appl Environ Microbiol 77:5212–5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cookson JT (1995) Bioremediation engineering: design and application. McGraw-Hill Education, New York, p 524

    Google Scholar 

  • Cord-Ruwisch R, Kleinitz W, Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J Pet Technol 39:97–106

    Article  CAS  Google Scholar 

  • Cornish Shartau SL, Yurkiw M, Lin S, Grigoryan AA, Lambo A, Park HS (2010) Ammonium concentrations in produced waters from a mesothermic oil field subjected to nitrate injection decrease through formation of denitrifying biomass and anammox activity. Appl Environ Microbiol 76:4977–4987

    Article  PubMed Central  CAS  Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16:191–200

    Article  Google Scholar 

  • Davidova IA, Harmsen HJM, Stams AJM, Belyaev SS, Zehnder AJB (1997) Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus. Int J Gen Mol Microbiol 71(4):313–318

    CAS  Google Scholar 

  • Davidova I, Hicks MS, Fedorak PM, Suflita JM (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol Biotechnol 27:80–86

    Article  CAS  PubMed  Google Scholar 

  • Davydova-charakhch’yan IA, Kuznetsova VG, Mityushina LL, Belyaev SS (1992) Methane-forming bacilli from oil-fields of Tataria and Westerb Siberia. Microbiology 61:202–207

    Google Scholar 

  • Demeter MA, Lemire J, George I, Yue G, Ceri H, Turner RJ (2014) Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere 97:78–85

    Article  CAS  PubMed  Google Scholar 

  • Devereux R, He SH, Doyle CL, Orkland S, Stahl DA, LeGall J (1990) Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J (2009) Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol 43:7977–7984

    Article  CAS  PubMed  Google Scholar 

  • Faiz M, Hendry P (2006) Significance of microbial activity in Australian coal bed methane reservoirs – a review. Bull Can Petrol Geol 54:261–272

    Article  Google Scholar 

  • Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P, Rimbault (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Fardeau ML, Magot M, Patel BKC, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50(6):2141–2149

    Article  CAS  PubMed  Google Scholar 

  • Fedorak PM, Coy DL, Salloum MJ, Dudas MJ (2002) Methanogenic potential of tailings samples from oil sands extraction plants. Can J Microbiol 48:21–33

    Article  CAS  PubMed  Google Scholar 

  • Feng WW, Liu JF, Gu JD, Mu BZ (2011) Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA). Int Biodeterior Biodegrad 65:1081–1086

    Article  CAS  Google Scholar 

  • Fida TT, Chen C, Okpala G, Voordouw G (2016) Implications of limited thermophilicity of nitrite reduction for control of sulfide production in oil reservoirs. Appl Environ Microbiol 82:4190–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher JB (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim Cosmochim Acta 51:2459–2468

    Article  CAS  Google Scholar 

  • Folarin Y, An D, Caffrey S, Soh J, Sensen CW, Voordouw J (2013) Contribution of make-up water to the microbial community in an oilfield from which oil is produced by produced water re-injection. Int Biodeterior Biodegrad 81:44–50

    Article  CAS  Google Scholar 

  • Frank Y, Banks D, Avakian M, Antsiferov D, Kadychagov P, Karnachuk O (2016) Firmicutes is an important component of microbial communities in water-injected and Pristine Oil Reservoirs, Western Siberia, Russia. Geomicrobiol J 33:387–400

    Article  Google Scholar 

  • Fredrickson JK, Mckinley JP, Nierzwicki-Bauer SA, White DC, Ringelberg DB, Rawson SA (1995) Microbial community structure and biogeochemistry of Miocene subsurface sediments: implications for long-term microbial survival. Mol Ecol 4:619–626

    Article  CAS  Google Scholar 

  • Gales G, Tsesmetzis N, Neria I, Alazard D, Coulon S, Lomans BP (2016) Preservation of ancestral cretaceous microflora recovered from a hypersaline oil reservoir. Sci Rep 6:22960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao PK, Li GQ, Zhao LX, Dai XC, Tian HM, Dai LB (2014) Dynamic processes of indigenous microorganisms from a low-temperature petroleum reservoir during nutrient stimulation. J Biosci Bioeng 117:215–221

    Article  CAS  PubMed  Google Scholar 

  • Gao PK, Li GQ, Tian HM, Wang YS, Sun HW, Ma T (2015) Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs. Biogeosciences 12:3403–3414

    Article  Google Scholar 

  • Gao P, Tian H, Wang Y, Li Y, Li Y, Xie J (2016) Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China. Sci Rep 6:20174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevertz D, Paterek JR, Davey ME, Wood WA (1991) Ch. R-6 isolation and characterization of anaerobic halophilic bacteria from oil reservoir brines. Dev Pet Sci 31(C):115–129

    Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282

    Article  CAS  PubMed  Google Scholar 

  • Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A (2012) Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35:165–174

    Article  CAS  PubMed  Google Scholar 

  • Government of Alberta (2010) Responsible actions: a plan for Alberta’s oil sands annual progress report. Available from: https://www.energy.alberta.ca/pdf/OSSResponsibleActionsProgressReport2011.pdf

  • Grabowski A, Blanchet D, Jeanthon C (2005) Characterization of long-chain fatty-acid-degrading syntrophic associations from a biodegraded oil reservoir. Res Microbiol 156:814–821

    Article  CAS  PubMed  Google Scholar 

  • Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    Article  CAS  Google Scholar 

  • Green MS, Flanegan KC, Gilcrease PC (2008) Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A. Int J Coal Geol 76:34–45

    Article  CAS  Google Scholar 

  • Greene C, Patel BK, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  CAS  PubMed  Google Scholar 

  • Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol 74:4324–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan J, Xia LP, Wang LY, Liu JF, Mu BZ (2013) Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. Int Biodeterior Biodegrad 76:58–66

    Article  CAS  Google Scholar 

  • Guo H, Liu R, Yu Z, Zhang H, Yun J, Li Y (2012) Pyrosequencing reveals the dominance of methylotrophic methanogenesis in a coal bed methane reservoir associated with Eastern Ordos Basin in China. Int J Coal Geol 93:56–61

    Article  CAS  Google Scholar 

  • Head IM, Larter SR, Gray ND, Sherry A, Adams JJ, Aitken CM (2010) Hydrocarbon degradation in petroleum reservoirs. In: Timmis KN (ed) Handbook hydrocarbon lipid microbiology. Springer, Heidelberg, pp 3098–3105

    Google Scholar 

  • Hu P, Tom L, Singh A, Thomas BC, Baker BJ, Piceno YM (2016) Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. MBio 7:01669–01615

    Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog 19:338–345

    Article  CAS  PubMed  Google Scholar 

  • Hubert C, Voordouw G, Mayer B (2009) Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: the example of oil reservoir souring control. Geochim Cosmochim Acta 73:3864–3879

    Article  CAS  Google Scholar 

  • Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil- producing well. J Syst Bacteriol 36(49):367–375

    Article  Google Scholar 

  • Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S (2015) Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81:1839–1846

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeanthon C, Reysenbach AL, L’Haridon S, Gambacorta A, Pace NR, Glénat P (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97

    Article  CAS  PubMed  Google Scholar 

  • Jeanthon C, Nercessian O, Grabowski-Lux A (2005) Hyperthermophilic and methanogenic archaea in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 55–69

    Chapter  Google Scholar 

  • Jones EJP, Voytek MA, Corum MD, Orem WH (2010) Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Appl Environ Microbiol 76:7013–7022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–934

    Article  CAS  PubMed  Google Scholar 

  • Kasperski KL, Mikula RJ (2011) Waste streams of mined oil sands: characteristics and remediation. Elements 7:387–392

    Article  CAS  Google Scholar 

  • Kaster KM, Grigoriyan A, Jennneman G, Voordouw G (2007) Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea. Appl Microbiol Biotechnol 75:195–203

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Mandal AK, Nihlani MC, Lal B (2009) Control of sulfidogenic bacteria in produced water from the Kathloni oilfield in northeast India. Int Biodeterior Biodegrad 63:151–155

    Article  CAS  Google Scholar 

  • Kengen SWM, Stams AJM (1994) Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 161:168–175

    Article  CAS  Google Scholar 

  • Klein DA, Flores RM, Venot C, Gabbert K, Schmidt R, Stricker GD (2008) Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration. Int J Coal Geol 76:3–13

    Article  CAS  Google Scholar 

  • Kodama Y, Watanabe K (2003) Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl Environ Microbiol 69(1):107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryachko Y, Dong X, Sensen CW, Voordouw G (2012) Compositions of microbial communities associated with oil and water in a mesothermic oil field. Int J Gen Mol Microbiol 101:493–506

    Google Scholar 

  • Kryachko Y, Semler D, Vogrinetz J, Lemke M, Irvine, Davidson J (2017) Analyses of 16S rRNA and cpn60 gene sequences provide complementary information about potentially useful and harmful oil field microbiota. Int Biodeterior Biodegrad 123:320–327

    Article  CAS  Google Scholar 

  • L’haridon S, Reysenbacht AL, Glénat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–234

    Article  Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E (2002) Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722

    PubMed  Google Scholar 

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2006) Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett 257:92–98

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2007) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60(1):74–84

    Article  CAS  PubMed  Google Scholar 

  • Li D, Hendry P, Faiz M (2008) A survey of the microbial populations in some Australian coalbed methane reservoirs. Int J Coal Geol 76:14–24

    Article  CAS  Google Scholar 

  • Li XX, Liu JF, Yao F, Wu WL, Yang SZ, Mbadinga SM (2016) Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. Int Biodeterior Biodegrad 114:45–56

    Article  CAS  Google Scholar 

  • Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Magot M (1996) Similar bacteria in remote oil fields. Nature 379:681–681

    Article  CAS  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 21–33

    Chapter  Google Scholar 

  • Magot M, Fardeau ML, Arnauld O, Lanau C, Ollivier B, Thomas P (1997a) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155:185–191

    Article  CAS  PubMed  Google Scholar 

  • Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BK, Fardeau ML (1997b) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824

    Article  CAS  PubMed  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Int J Gen Mol Microbiol 77:103–116

    CAS  Google Scholar 

  • Marteinsson VT, Hauksdóttir S, Hobel CFV, Kristmannsdóttir H, Hreggvidsson GO, Kristjánsson JK (2001) Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInerery MJ, Bryant MP (1981) Review of methane fermentation fundamentals [Production of fuel gas from organic waste products]. Fuel gas production from biomass, vol 1, pp 19–45

    Google Scholar 

  • McInerney MJ, Duncan KE, Youssef N, Fincher T, Maudgalya SK, Knapp R (2005) Development of microorganisms with improved transport and biosurfactant activity for enhanced oil recovery. University of Oklahoma

    Google Scholar 

  • Midgley DJ, Hendry P, Pinetown KL, Fuentes D, Gong S, Mitchell DL (2010) Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia. Int J Coal Geol 82:232–239

    Article  CAS  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Sepúlveda J, Fernández L, Cayol JL, Thomas P (2003) Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int J Syst Evol Microbiol 53:1509–1514

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Thomas P, Ramirez F, Casalot L, Cayol JL (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54(1):169–174

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91

    Article  CAS  PubMed  Google Scholar 

  • Moser DP, Nealson KH (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62(6):2100–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myhr S, Torsvik T (2000) Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 50:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Nazina TN, Ivanova AE, Golubeva OV, Ibatullin RR, Belayev SS, Ivanov MV (1995) Occurence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoie oil field. Microbiology 64:245–251

    CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus. Int J Syst Evol Microbiol 51:433–446

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343

    Article  CAS  PubMed  Google Scholar 

  • Ng TK, Weimer PJ, Gawel LJ (1989) Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the San Miguelito field, Ventura county, California. Geomicrobiol J 7:185–192

    Article  Google Scholar 

  • Nga DP, Ha DTC, Hien LT, Stan-Lotter H (1996) Desulfovibrio vietnamensis sp.nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392

    Article  CAS  Google Scholar 

  • Ni SS, Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41:410–416

    Article  CAS  PubMed  Google Scholar 

  • Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obraztsova AY, Tsyban VE, Laurina Vichus KS, Bezrukova LV, Belyaev SS (1987) Biological properties of Methanosarcina not utilizing carbonic acid and hydrogen. Microbiology 56:807–812

    Google Scholar 

  • Okoro C, Smith S, Chiejina L, Lumactud R, An D, Park HS (2014) Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria. J Ind Microbiol Biotechnol 41:665–678

    Article  CAS  PubMed  Google Scholar 

  • Okpala GN, Chen C, Fida T, Voordouw G (2017) Effect of thermophilic nitrate reduction on sulfide production in high temperature oil reservoir samples. Front Microbiol 8:1573

    Article  PubMed  PubMed Central  Google Scholar 

  • Ollivier B, Cayol JL (2005) Fermentative, iron-reducing, and nitrate-reducing microorganisms. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 71–88

    Chapter  Google Scholar 

  • Ollivier B, Fardeau M, Cayol J, Magot M, Patel BKC, Prensiep (1997) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Evol Microbiol 48:821–828

    Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66(2):700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  CAS  PubMed  Google Scholar 

  • Penner TJ, Foght JM, Budwill K (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int J Coal Geol 82:81–93

    Article  CAS  Google Scholar 

  • Planckaert M (2005) Oil reservoirs and oil production. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 3–19

    Chapter  Google Scholar 

  • Prajapat G, Rellegadla S, Jain S, Agrawal A (2018) Reservoir souring control using benzalkonium chloride and nitrate in bioreactors simulating oil fields of western India. Int Biodeterior Biodegrad 132:30–39

    Article  CAS  Google Scholar 

  • Ramos-Padrón E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45:439–446

    Article  PubMed  CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314

    Article  CAS  PubMed  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BKC, Thomas P, Garcia JL (1999) Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49:1141–1147

    Article  CAS  PubMed  Google Scholar 

  • Rees GN, Patel BK, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154

    Article  CAS  PubMed  Google Scholar 

  • Rengpipat S, Langworthy TA, Zeikus JG (1988) Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep subsurface hypersaline environments. Syst Appl Microbiol 11:28–35

    Article  Google Scholar 

  • Rinker KD, Kelly RM (2000) Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol Bioeng 69:537–547

    Article  CAS  PubMed  Google Scholar 

  • Ritter D, Vinson D, Barnhart E, Akob DM, Fields MW, Cunningham AB (2015) Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges. Int J Coal Geol 146:28–41

    Article  CAS  Google Scholar 

  • Rosnes JT, Torsvik T, Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from north sea oil field waters. Appl Environ Microbiol 57:2302–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salinas MB, Fardeau ML, Cayol JL, Casalot L, Patel BKC, Thomas P (2004a) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from Australian oil well. Int J Syst Evol Microbiol 54:645–649

    Article  CAS  PubMed  Google Scholar 

  • Salinas MB, Fardeau ML, Thomas P, Cayol JL, Patel BKC, Ollivier B (2004b) Mahella australiensis gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54(6):2169–2173

    Article  CAS  Google Scholar 

  • Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11(1):26–57

    Article  PubMed  Google Scholar 

  • Scott A (1999) Improving coal gas recovery with microbially enhanced coalbed methane. In: Mastalerz M, Gikson M, Golding SD (eds) Coalbed methane: scientific, environmental and economic evaluation. Springer, Dordrecht, pp 89–110

    Chapter  Google Scholar 

  • Semple KM, Westlake DWS (1987) Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 33:366–371

    Article  CAS  Google Scholar 

  • Shimizu S, Akiyama M, Naganuma T, Fujioka M, Nako M, Ishijima Y (2007) Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology 5:423–433

    Article  CAS  Google Scholar 

  • Singh DN, Tripathi AK (2013) Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed. Bioresour Technol 128:215–221

    Article  CAS  PubMed  Google Scholar 

  • Singh DN, Kumar A, Sarbhai MP, Tripathi AK (2012) Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane. Appl Microbiol Biotechnol 93:1337–1350

    Article  CAS  PubMed  Google Scholar 

  • Slobodkin AI, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102

    Article  CAS  PubMed  Google Scholar 

  • Speight JG (1999) Chapter 6: chemical composition. In: Speight JG (ed) Chemistry and technology of petroleum. Marcel Dekker, New York, pp 234–259

    Chapter  Google Scholar 

  • Speight JG (2014) The chemistry and technology of petroleum. CRC Press, Boca Raton, p 953

    Book  Google Scholar 

  • Stetter KO, Hohann A, Huber R (1993a) Microorganism adapted to high temperature environments. In: Proceedings of the sixth international symposium on microbial ecology, Barcelona, Spanish Society for Microbiology, pp 25–28

    Google Scholar 

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M (1993b) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Article  Google Scholar 

  • Strąpoć D, Ashby M, Wood L, Levinson R, Huizinga B (2010) How specific microbial communities benefit the oil industry: significant contribution of methyl/methanol-utilising methanogenic pathway in a subsurface biogas environment. In: Whitby C, Skovhus TL (eds) Applied microbiology and molecular biology in oilfield systems. Springer, Dordrecht, pp 211–216

    Chapter  Google Scholar 

  • Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B (2011) Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci 39(1):617–656

    Article  CAS  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2000) Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O, Magot M (1996) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42(3):259–266

    Article  CAS  PubMed  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63(5):1785–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Gao P, Chen Z, Li Y, Li Y, Wang Y (2017) Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Front Microbiol 8(Feb):143

    PubMed  PubMed Central  Google Scholar 

  • Vick SHW, Greenfield P, Tran-Dinh N, Tetu SG, Midgley DJ, Paulsen IT (2018) The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community. Int J Coal Geol 186:41–50

    Article  CAS  Google Scholar 

  • Volkwein JC, Schoeneman AL, Clausen EG, Gaddy JL, Johnson ER, Basu R (1994) Biological production of methane from bituminous coal. Fuel Process Technol 40:339–345

    Article  CAS  Google Scholar 

  • Voordouw G, Voordouw JK, Jack TR, Foght J, Fedorak PM, Westlake DWS (1992) Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl Environ Microbiol 58:3542–3552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y (1996) Characterization of 16s rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Ma F, Zhao G (2010) Composition and dynamics of sulfate-reducing bacteria during the waterflooding process in the oil field application. Bioresour Technol 101(8):2643–2650

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper H, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3352–3378

    Chapter  Google Scholar 

  • Widdel F, Pfennig N (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112:119–122

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolicka D, Borkowski A (2012) Microorganisms and crude oil. In: Introduction to Enhanced Oil Recovery (EOR) processes and bioremediation of oil-contaminated sites. InTech, Croatia, pp 113–143

    Google Scholar 

  • Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW (2012) Next-generation sequencing of microbial communities in the athabasca river and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78:7626–7627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapata-Peñasco I, Salazar-Coria L, Saucedo-García M, Villa-Tanaka L, Hernández-Rodríguez C (2013) Bisulfite reductase and nitrogenase genes retrieved from biocorrosive bacteria in saline produced waters of offshore oil recovery facilities. Int Biodeterior Biodegrad 81:17–27

    Article  CAS  Google Scholar 

  • Zapata-Peñasco I, Salazar-Coria L, Saucedo-García M, Villa-Tanaca L, Hernández-Rodríguez C (2016) Bisulfite reductase gene expression of thermophilic sulphate-reducing bacteria from saline connate water of oil reservoirs with high temperature. Int Biodeterior Biodegrad 108:198–206

    Article  CAS  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Springer, Boston, pp 128–206

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prajapat, G., Jain, S., Agrawal, A. (2019). Microbial Diversity and Dynamics in Hydrocarbon Resource Environments. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_17

Download citation

Publish with us

Policies and ethics