Skip to main content

Halocin Diversity Among Halophilic Archaea and Their Applications

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Haloarchaea and their metabolites show unusual properties such as stability under extreme conditions and create special interest for the search of novel products. In recent years, studies on systematics have intensified and identified many new genera and species. Haloarchaea belonging to class Halobacteria are divided into three orders: Halobacteriales, Haloferacales, and Natrialbales consisting of more than 48 genera and 216 species. Haloarchaea and their metabolites are useful for various industrial applications. Halophilic proteins and enzymes produced by haloarchaea remain functional under high salt concentrations, extreme pH, and high temperature at which bacterial counterparts denature. These features make haloarchaea an attractive source of a wide variety of biotechnological products, such as retinal proteins, osmolytes, carotenoids, various hydrolytic enzymes, polyhydroxyalkanoates (PHAs), and exopolysaccharides. The biomolecules produced by haloarchaea have important role in manufacturing of bioplastics, photoelectric devices, artificial retinas, holograms, bioremediation process, and numerous other potential applications in biotechnology. Further study is more focused to develop a low-cost platform for low-cost downstream process with better yield at larger scale. Halocins are the proteinaceous antimicrobial proteins/peptides (AMPs) secreted by several members of haloarchaea. The production, purification, and characterization of halocins have been studied from various members of haloarchaea to understand the unique importance for their possible applications. The therapeutic potential of halocins needs more exploration to decipher an alternate to clinical antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio J, Demain A (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139

    Google Scholar 

  • Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109:44–53

    CAS  PubMed  Google Scholar 

  • Alsafadi D, Al-Mashaqbeh O (2017) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol 34:47–53

    Article  CAS  Google Scholar 

  • Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479

    Article  CAS  Google Scholar 

  • Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A (2017) Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 163(5):623–645

    Article  CAS  PubMed  Google Scholar 

  • Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras ECG, Andrade GC, Moura MV, Almeida RV, Freire DM (2014) From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed Res Int 2014:1–11

    Article  Google Scholar 

  • Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161:573–582

    Article  PubMed  Google Scholar 

  • Balasubramanian S, Pal S, Bagchi B (2002) Hydrogen-bond dynamics near a micellar surface: origin of the universal slow relaxation at complex aqueous interfaces. Phys Rev Lett 89:115505

    Article  PubMed  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Berlendis S, Cayol JL, Verhe F, Laveau S, Tholozan JL, Ollivier B, Auria R (2009) First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter. Appl Biochem Biotechnol 160:1992–1999

    Article  PubMed  CAS  Google Scholar 

  • Besse A, Peduzzi J, Rebuffat S, Carre-Mlouka A (2015) Antimicrobial peptides and proteins in the face of extremes lessons from archaeocins. Biochimie 118:344–355

    Article  CAS  PubMed  Google Scholar 

  • Bidle K, Amadio W, Oliveira P, Paulish T, Hicks S, Earnest C (2005) A phylogenetic analysis of haloarchaea found in a solar saltern. Bios 76:89–96

    Article  Google Scholar 

  • Birbir M, Calli B, Mertoglu B, Bardavid RE, Oren A, Ogmen MN, Ogan A (2007) Extremely halophilic archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns. World J Microbiol Biotechnol 23(3):309–316

    Article  CAS  Google Scholar 

  • Bonete MJ, Martinez-Espinosa RM, Pire C, Zafrilla B, Richardson DJ (2008) Nitrogen metabolism in haloarchaea. Saline Syst 4:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonete MJ, Bautista V, Esclapez J, García-Bonete MJ, Pire C, Camacho M, Torregrosa-Crespo J, Martínez-Espinosa RM (2015) New uses of haloarchaeal species in bioremediation processes. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. InTech, Rijeka, pp 23–49

    Google Scholar 

  • Boutaiba S, Bhatnagar T, Hacene H, Mitchell DA, Baratti JC (2006) Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 41(1–2):21–26

    Article  CAS  Google Scholar 

  • Bozic N, Ruiz J, Santin JL, Vujic Z (2011) Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem Eng J 53:203–209

    Article  CAS  Google Scholar 

  • Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete MJ, Ferrer J, Pire C, Esclapez J, Rice DW (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci U S A 103:4846–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Álvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808

    Article  CAS  Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70(9):5258–5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capiralla H, Hiroi T, Hirokawa T, Maeda S (2002) Purification and characterization of a hydrophobic amino acid-specific endopeptidase from Halobacterium halobium S9 with potential application in debittering of protein hydrolysates. Process Biochem 38:571–579

    Article  CAS  Google Scholar 

  • Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW (2008) Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol 126:159–166

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth J, Burns BP (2016) Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiol 2(3):251–261

    Article  CAS  Google Scholar 

  • Cheung J, Danna KJ, O’Connor EM, Price LB, Shand RF (1997) Isolation, sequence, and expression of the gene encoding halocin H4, a bacteriocin from the halophilic archaeon H. mediterranei R4. J Bacteriol 179:548–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto JJ, Ventosa A (2000) The α-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146:861–868

    Article  CAS  PubMed  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, Arora P (1997) Genetic analysis of the gas vesicle gene cluster in haloarchaea. FEMS Microbiol Lett 153:1–10

    Article  CAS  Google Scholar 

  • DasSarma S, Arora P (2001) Halophiles. In: Encyclopedia of life sciences. Nature Publishing Group, Basingstoke, pp 1–9. www.els.net

    Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. In: eLS. Wiley. https://doi.org/10.1002/9780470015902.a0000394.pub3

  • DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 7. Wiley, New York, pp 2769–2777

    Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Vargas F, Jiménez AR, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289

    Article  CAS  PubMed  Google Scholar 

  • Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Ed 17(12):1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Ebert K, Goebel W, Rdest U, Surek B (1986) Genes and genome structures in the archaebacteria. Syst Appl Microbiol 7:30–35

    Article  CAS  Google Scholar 

  • Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19(4):261–278

    Article  CAS  PubMed  Google Scholar 

  • Ellen AF, Rohulya OV, Fusetti F, Wagner M, Albers SV, Driessen AJ (2011) The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. J Bacteriol 193:4380–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed WS, Takaichi S, Saida H, Kamekura M, Abu-Shady M, Seki H, Kuwabara T (2002) Effects of light and low oxygen tension on pigment biosynthesis in Halobacterium salinarum, revealed by a novel method to quantify both retinal and carotenoids. Plant Cell Physiol 43:379–383

    Article  CAS  PubMed  Google Scholar 

  • Elshahed MS, Savage KN, Oren A, Gutierrez MC, Ventosa A, Krumholz LR (2004) Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int J Syst Evol Microbiol 54:2275–2279

    Article  CAS  PubMed  Google Scholar 

  • Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L (2007) Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57:393–397

    Article  CAS  PubMed  Google Scholar 

  • Essen LO (2002) Halorhodopsin: light-driven ion pumping made simple? Curr Opin Struct Biol 12:516–522

    Article  CAS  PubMed  Google Scholar 

  • Fassett RG, Coombes JS (2012) Astaxanthin in cardiovascular health and disease. Molecules 17:2030–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AB, Vera-Gargallo B, Sanchez-Porro C, Ghai R, Papke RT, Rodriguez-Valera F, Ventosa A (2014) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghanmi F, Carre-Mlouka A, Vandervennet M, Boujelben I, Frikha D, Ayadi H, Peduzzi J, Rebuffat S, Maalej S (2016) Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia. Extremophiles 20(3):363–374

    Article  CAS  PubMed  Google Scholar 

  • Gibbons NE (1974) Family V. Halobacteriaceae fam. nov. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore, pp 269–273

    Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordan JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III. Halobacteria class. Nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer-Verlag, New York, pp 294–334

    Google Scholar 

  • Guan Z, Naparstek S, Calo D, Eichler J (2012) Protein glycosylation as an adaptive response in archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation. Environ Microbiol 14:743–753

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin MS (2008) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19:15–19

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069

    Article  CAS  PubMed  Google Scholar 

  • Guzman H, Van-Thuoc D, Martin J, Hatti-Kaul R, Quillaguaman J (2009) A process for the production of ectoine and poly (3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biotechnol 84:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73(19):6058–6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haseltine C, Hill T, Montalvo-Rodriguez R, Kemper SK, Shand RF, Blum P (2001) Secreted euryarchaeal microhalocins kill hyperthermophilic crenarchaea. J Bacteriol 183:287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatori Y, Sato M, Orishimo K, Yatsunami R, Endo K, Fukui T, Nakamura S (2006) Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1. Chitin Chitosan Res 12:201

    Google Scholar 

  • Hezayen FF, Rehm BH, Tindall BJ, Steinbüchel A (2001) Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the archaea from Egypt that produces extracellular poly (glutamic acid). Int J Syst Evol Microbiol 51:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Hilhorst R, Dunnewind B, Orsel R, Stegeman P, Vliet T, Gruppen H, Schols HA (1999) Baking performance, rheology, and chemical composition of wheat dough and gluten affected by xylanase and oxidative enzymes. J Food Sci 64:808–813

    Article  CAS  Google Scholar 

  • Hiraga K, Nishikata Y, Namwong S, Tanasupawat S, Takada K, Oda K (2005) Purification and characterization of serine proteinase from a halophilic bacterium, Filobacillus sp. RF2-5. Biosci Biotechnol Biochem 69:38–44

    Article  CAS  PubMed  Google Scholar 

  • Hong FT (1986) The bacteriorhodopsin model membrane system as a prototype molecular computing element. Biosystems 19:223–236

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Han J, Cai L, Zhou J, Lü Y, Jin C, Liu J, Xiang H (2014) Characterization of genes for chitin catabolism in Haloferax mediterranei. Appl Microbiol Biotechnol 98:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterization of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9:487–495

    Article  CAS  PubMed  Google Scholar 

  • Imadalou-Idres N, Carre-Mlouka A, Vandervennet M, Yahiaoui H, Peduzzi J, Rebuffat S (2013) Diversity and antimicrobial activity of cultivable halophilic archaea from three Algerian sites. J Life Sci 10:1057–1069

    Google Scholar 

  • Jain S, Caforio A, Fodran P, Lolkema JS, Minnaard AJ, Driessen AJM (2014) Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in archaea. Chem Biol 21:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J (2014) N-linked glycosylation in archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78:304–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamekura M, Kates M (1999) Structural diversity of membrane lipids in members of halobacteriaceae. Biosci Biotechnol Biochem 63:969–972

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Capes MD, DasSarma P, DasSarma S (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan P, Bhat SG, Chandrasekaran M (2013) Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi J Biol Sci 20:205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitha P, Lipton AP, Sarika AR, Aishwarya MS (2011) Growth characteristics and halocin production by a new isolate, H. volcanii KPSl from Kovalam solar saltern (India). Res J Biol Sci 6:257–262

    Google Scholar 

  • Kebbouche-Gana S, Gana ML, Khemili S, Fazouane-Naimi F, Bouanane NA, Penninckx M, Hacene H (2009) Isolation and characterization of halophilic archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36:727–738

    Article  CAS  PubMed  Google Scholar 

  • Kelly M, Jensen SL (1967) Bacterial carotenoids. XXVI. C50-carotenoids. 2. Bacterioruberin. Acta Chem Scand 21(9):2578–2580

    Article  CAS  PubMed  Google Scholar 

  • Keshri J, Mishra A, Jha B (2013) Microbial population index and community structure in saline–alkaline soil using gene targeted metagenomics. Microbiol Res 168(3):165–173

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Dordick JS (1997) Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 55:471–479

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Lee KC, Lee JS (2011) Halogranum salarium sp. nov., a halophilic archaeon isolated from sea salt. Syst Appl Microbiol 34:576–580

    Article  CAS  PubMed  Google Scholar 

  • Klare J, Chizhov I, Engelhard M (2008) Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Bioenergetics. Results Probl Cell Differ 45:73–122

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Tiwari SK (2017a) Halocin HA1: an archaeocin produced by the haloarchaeon Haloferax larsenii HA1. Process Biochem 61:202–208

    Article  CAS  Google Scholar 

  • Kumar V, Tiwari SK (2017b) Activity-guided separation and characterization of new halocin HA3 from fermented broth of Haloferax larsenii HA3. Extremophiles 21:609–621

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Saxena J, Tiwari SK (2016) Description of a halocin-producing Haloferax larsenii HA1 isolated from Pachpadra salt lake in Rajasthan. Arch Microbiol 198:181–192

    Article  CAS  PubMed  Google Scholar 

  • Kushner DJ, Kamekura M (1998) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC Press, Inc, Boca Raton, pp 109–138

    Google Scholar 

  • Kushwaha SC, Kramer JK, Kates M (1975) Isolation and characterization of C50-carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum. Biochim Biophys Acta 398:303–314

    Article  CAS  PubMed  Google Scholar 

  • Labes A, Karlsson EN, Fridjonsson OH, Turner P, Hreggvidson GO, Kristjansson JK, Holst O, Schönheit P (2008) Novel members of glycoside hydrolase family 13 derived from environmental DNA. Appl Environ Microbiol 74:1914–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The petrochemical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583

    Article  CAS  Google Scholar 

  • Lee HS (2013) Diversity of halophilic archaea in fermented foods and human intestines and their application. J Microbiol Biotechnol 23:1645–1653

    Article  CAS  PubMed  Google Scholar 

  • Lequerica JL, O’Connor JE, Such L, Alberola A, Meseguer I, Dolz M, Torreblanca M, Moya A, Colom F, Soria B (2006) A halocin acting on Na+/H+ exchanger of Haloarchaea as a new type of inhibitor in NHE of mammals. J Physiol Biochem 62:253–262

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol 59(6):455–463

    Article  CAS  Google Scholar 

  • Li Y, Xiang H, Liu J, Zhou M, Tan H (2003) Purification and bio- logical caracterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles 7:401–407

    Article  CAS  PubMed  Google Scholar 

  • Liebgott PP, Labat M, Casalot L, Amouric A, Lorquin J (2007) Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp. strain HTB24. FEMS Microbiol Lett 276:26–33

    Article  CAS  PubMed  Google Scholar 

  • LPSN (2016) List of prokaryotic names with standing in nomenclature. http://www.bacterio.net/

  • Lu Q, Han J, Zhou L, Zhou J, Xiang H (2008) Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei. J Bacteriol 190(12):4173–4180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch EA, Langille MGI, Darling A, Wilbanks EG, Haltiner C, Shao KSY, Starr MO, Teiling C, Harkins TT, Edwards RA, Eisen JA, Facciotti MT (2012) Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. PLoS One 7:e41389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    Article  CAS  PubMed  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183(14):4235–4243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2(3):243–250

    Article  CAS  PubMed  Google Scholar 

  • Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ (2014) Engineering the diversity of polyesters. Curr Opin Biotechnol 29:24–33

    Article  CAS  PubMed  Google Scholar 

  • Meseguer I, Rodriguez-Valera F (1985) Production and purification of halocin H4. FEMS Microbiol Lett 28:177–182

    Article  CAS  Google Scholar 

  • Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, Hashimoto T (2010) Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. Int J Syst Evol Microbiol 60(10):2398–2408

    Article  PubMed  Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102

    Article  PubMed  Google Scholar 

  • Moschetti G, Aponte M, Blaiotta G, Casaburi A, Chiurazzi M, Ventorino V, Villani F (2006) Characterization of halophilic archaea isolated from different hypersaline ecosystems. Ann Microbiol 56(2):119–127

    Article  CAS  Google Scholar 

  • Mozejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282

    Article  CAS  PubMed  Google Scholar 

  • Muller-Santos M, de Souza EM, Pedrosa FD, Mitchell DA, Longhi S, Carriere F, Canaan S, Krieger N (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta 1791:719–729

    Article  PubMed  CAS  Google Scholar 

  • Munawar N, Engel PC (2013) Halophilic enzymes: characteristics, structural adaptation and potential applications for biocatalysis. Curr Biotechnol 2(4):334–344

    Article  CAS  Google Scholar 

  • Najera-Fernandez C, Zafrilla B, Bonete MJ, Martınez- Espinosa RM (2012) Role of the denitrifying Haloarchaea in the treatment of nitrite-brines. Int Microbiol 15(3):111–119

    CAS  PubMed  Google Scholar 

  • Namwong S, Hiraga K, Takada K, Tsunemi M, Tanasupawat S, Oda K (2006) A halophilic serine proteinase from Halobacillus sp. SR5-3 isolated from fish sauce: purification and characterization. Biosci Biotechnol Biochem 70:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Naziri D, Hamidi M, Hassanzadeh S, Vahideh T, Zanjani BM, Nazemyieh H, Hejazi MA, Hejazi MS (2014) Analysis of carotenoid production by Halorubrum sp. TBZ126: an extremely halophilic archaeon from Urmia Lake. Adv Pharm Bull 4:61–67

    CAS  PubMed  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  CAS  PubMed  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions of salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31

    Article  PubMed  CAS  Google Scholar 

  • Obayashi A, Hiraoka N, Kita K, Nakajima H, Shuzo T (1988) US Patent 4:724, 209, US Cl. 435/199

    Google Scholar 

  • Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (2010) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 141:161–169

    Article  Google Scholar 

  • Olivera ER, Arcos M, Naharro G, Luengo JM (2010) Unusual PHA biosynthesis. In: Chen GQ (ed) Plastics from bacteria, vol 14. Microbiology Monographs, Springer, Berlin/Heidelberg, pp 133–186

    Chapter  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2, 3rd edn. Springer, New York, pp 263–282

    Google Scholar 

  • Oren A (2010) Industrial and environmental applications of Halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2011) Diversity of halophiles. In: Horikoshi K (ed) Extremophiles handbook, vol 1. Springer, Tokyo, pp 310–322

    Google Scholar 

  • Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271

    Article  PubMed  Google Scholar 

  • Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A (2014) Taxonomy of halophilic archaea: current status and future challenges. Extremophiles 18:825–834

    Article  PubMed  Google Scholar 

  • Oren A, Rodríguez-Valera F (2001) The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130

    CAS  PubMed  Google Scholar 

  • Oren A, Ventosa A, Grant WD (1997) Proposal of minimal standards for the description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238

    Article  Google Scholar 

  • Oren A, Arahal DR, Ventosa A (2009) Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59:637–642

    Article  PubMed  Google Scholar 

  • Oxley APA, Lanfranconi MP, Würdemann D, Ott S, Schreiber S, McGenity TJ, Timmis KN, Nogales B (2010) Halophilic archaea in the human intestinal mucosa. Environ Microbiol 12(9):2398–2410

    Article  PubMed  Google Scholar 

  • Palczewski G, Amengual J, Hoppel CL, von Lintig J (2014) Evidence for compartmentalization of mammalian carotenoid metabolism. FASEB J 28:4457–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EJ, Chang HW, Kim KH, Nam YD, Roh SW, Bae JW (2009) Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi. J Microbiol 47:682–685

    Article  CAS  PubMed  Google Scholar 

  • Parka GT, Son HJ (2007) Keratinolytic activity of Bacillus megaterium F7–1, a feather-degrading mesophilic bacterium. Microbiol Res 164:478–485

    Article  CAS  Google Scholar 

  • Pasic L, Velikonja BH, Ulrih NP (2008) Optimization of the culture conditions for the production of a bacteriocin from halophilic archaeon Sech7a. Prep Biochem Biotechnol 38:229–245

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299–306

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer F (2015) Haloarchaea and the formation of gas vesicles. Life (Basel) 5(1):385–402

    CAS  Google Scholar 

  • Platas G, Meseguer I, Amils R (2002) Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a. Int Microbiol 5:15–19

    Article  CAS  PubMed  Google Scholar 

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011:693253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price LB, Shand RF (2000) Halocin S8: a 36-amino-acid microhalocin from the haloarchaeal strain S8a. J Bacteriol 182:4951–4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595

    Article  CAS  PubMed  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Ratnakar D (2013) Use of halophile physiology and adaptations in various industrial applications. Res J Biotechnol 8(2):1

    Google Scholar 

  • Rdest U, Sturm M (1987) Bacteriocins from halobacteria. In: Burgess R (ed) Protein purification: micro to macro. Alan R Liss, New York, pp 271–278

    Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera SM, Canela-Garayoa R (2012) Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A 1224:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7(3):235–243

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Valera F, Juez G, Kushner DJ (1982) Halocins: salt – dependent bacteriocins produced by extremely halophilic rods. Can J Microbiol 28:151–154

    Article  CAS  Google Scholar 

  • Roh SW, Bae JW (2009) Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. J Microbiol 47:162–166

    Article  CAS  PubMed  Google Scholar 

  • Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 4:1–16

    Article  CAS  PubMed  Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  CAS  PubMed  Google Scholar 

  • Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104:10643–10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiraldi C, Giuliano MT, de Rosa M (2002) Perspectives on biotechnological applications of archaea. Archaea 1:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98:1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010) Halophilic cultured from ancient halite, Death Valley, California. Environ Microbiol 12(2):440–454

    Google Scholar 

  • Shand RF, Leyva KJ (2007) Peptide and protein antibiotics from the domain archaea: halocins and sulfolobicins. In: Riley MA, Chavan MA (eds) Bacteriocins: ecology and evolution. Springer, Berlin/Heidelberg/New York, pp 93–109

    Chapter  Google Scholar 

  • Shand RF, Leyva KJ (2008) Archaeal antimicrobials: an undiscovered country. In: Blum P (ed) Archaea: new models for prokaryotic biology. Caister Academic Press, Norfolk, pp 233–243

    Google Scholar 

  • Shimane Y, Hatada Y, Minegishi H, Echigo A, Nagaoka S, Miyazaki M, Ohta Y, Maruyama T, Usami R, Grant WD, Horikoshi K (2011) Salarchaeum japonicum gen. Nov., sp. nov., an aerobic, extremely halophilic member of the archaea isolated from commercial salt. Int J Syst Evol Microbiol 61:2266–2270

    Article  CAS  PubMed  Google Scholar 

  • Shimoshige H, Yamada T, Minegishi H, Echigo A, Shimane Y, Kamekura M, Itoh T, Usami R (2013) Halobaculum magnesiiphilum sp. nov., a magnesium dependent haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 63:861–866

    Article  CAS  PubMed  Google Scholar 

  • Soppa J, Oesterhelt D (1989) Halobacterium sp. GRB: a species to work with!? Can J Microbiol 35(1):205–209

    Article  CAS  PubMed  Google Scholar 

  • Spudich JL, Luecke H (2002) Sensory rhodopsin II: functional insights from structure. Curr Opin Struct Biol 12:540–546

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Li Y, Mei S, Lu Q, Zhou L, Xiang H (2005) A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Mol Microbiol 57:537–549

    Article  CAS  PubMed  Google Scholar 

  • Syutkin AS, Pyatibratov MG, Fedorov OV (2014) Flagella of halophilic archaea: differences in supramolecular organization. Biochem Mosc 79:1470–1482

    Article  CAS  Google Scholar 

  • Tapingkae W, Tanasupawat S, Parkin KL, Benjakul S, Visessanguan W (2010) Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzym Microb Technol 46:92–99

    Article  CAS  Google Scholar 

  • Taran M, Amirkhani H (2010) Strategies of poly(3-hydroxybutyrate) synthesis by Haloarcula sp. IRU1 utilizing glucose as a carbon source: optimization of culture conditions by Taguchi methodology. Int J Biol Macromol 47:632–634

    Article  CAS  PubMed  Google Scholar 

  • Thombre R, Joshi V, Oke R (2016) Halophiles: pharmaceutical potential and biotechnological applications. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. Apple Academic Press, Waretown, pp 111–139

    Chapter  Google Scholar 

  • Torreblanca M, Meseguer I, Rodriguez-Valera F (1989) Halocin H6, a bacteriocin from H. gibbonsii. J Gen Microbiol 135:2655–2661

    CAS  Google Scholar 

  • Veldman A, Vahl HA (1994) Xylanase in broiler diets with differences in characteristics and content of wheat. Br Poult Sci 35:537–550

    Article  CAS  PubMed  Google Scholar 

  • Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitali B, Ndagijimana M, Cruciani F, Carnevali P, Candela M, Guerzoni ME, Brigidi P (2010) Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 10:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vsevolodov NN, Dyukova TV (1994) Retinal-protein complexes as optoelectronic components. Trends Biotechnol 12:81–88

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  • Woodward J, Wiseman A (1984) Topics in enzyme and fermentation biotechnology, vol 8. Wiley, New York, pp 9–30

    Google Scholar 

  • Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, Ikeda H, Fukui T, Nakasone K, Fujita N, Sekine M, Takashina T, Nakamura S (2014) Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol 5:100–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33(7):1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Zafrilla B, Martınez-Espinosa RM, Esclapez J, Perez-Pomares F, Bonete MJ (2010) SufS protein from Haloferax volcanii involved in Fe-S cluster assembly in haloarchaea. Biochim Biophys Acta 1084:1476–1482

    Article  CAS  Google Scholar 

  • Zhang T, Datta S, Eichler J, Ivanova N, Axen SD, Kerfeld CA, Chen F, Kyrpides N, Hugenholtz P, Cheng J-F, Sale KL, Simmons B, Rubin E (2011) Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chem 13:2083–2090

    Article  CAS  Google Scholar 

  • Zhang J, Sun Z, Sun P, Chen T, Chen F (2014) Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 5:413–425

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Tiwari, S.K. (2019). Halocin Diversity Among Halophilic Archaea and Their Applications. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_16

Download citation

Publish with us

Policies and ethics