Skip to main content

Biogas Upgrading

  • Chapter
  • First Online:
Biomethane

Part of the book series: Green Energy and Technology ((GREEN))

  • 963 Accesses

Abstract

Many end use applications require a high quality of biogas, which means the gas must contain a higher percentage of methane than found in raw biogas. In such situations, it is common to improve the quality of the biogas by reducing the contaminants and unwanted gases. Contaminants, in this case, are defined as any substances that are not methane. For example, if used in natural gas vehicles, the raw biogas heating value should increase from \(23\ \text {MJ}/{\text {m}}^{3}\) to \(37{-}42\ \text {MJ}/{\text {m}}^{3}\). Upgrading involves two key steps, biogas cleaning, which is a pretreatment process readying the gas for the second process. This second process, calling upgrading, purifies the low methane, high carbon dioxide biogas into high methane, low carbon dioxide—biomethane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Authur W, Anna L (2006) Biogas upgrading and utilization. Technical report, IEA Bioenergy

    Google Scholar 

  2. Krich K, Augenstein D, Batmale JP, Benemann J, Rutledge B, Salour D (2005) Technologies for removal of carbon dioxide in biomethane from dairy waste, a sourcebook for the production and use of renewable natural gas in California. USDA Rural Development

    Google Scholar 

  3. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. J Environ Sci 20:14–27

    Article  Google Scholar 

  4. Kapdi SS, Vijay VK, Rajesh SK, Rajendra R (2004) Biogas upgradation and utilization as vehicle fuel. In: The joint international conference on “Sustainable energy and environment (SEE)”, Hua Hin, Thailand

    Google Scholar 

  5. Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Enginering Jpn

    Google Scholar 

  6. Nock William J, Walker Mark, Kapoor Rimika, Heaven Sonia (2014) Modeling the water scrubbing process and energy requirements for CO2 capture to upgrade biogas to biomethane. Ind Eng Chem Res 53:12783–12792

    Article  Google Scholar 

  7. Persson M (2003) Evaluation of upgrading techniques for biogas. Technical report report SGC 142, Swedish gas center

    Google Scholar 

  8. Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage : perspective and prospectus in Indian context. Renew Energy 30:1195–1202

    Article  Google Scholar 

  9. Persson M (2007) Biogas upgrading and utilization as vehicle fuel. In: European biogas workshop, Esbjerk, Denmark, June 2007

    Google Scholar 

  10. Electrigaz Technologies (2008) Feasibility study - biogas upgrading and grid injection in the fraser valley. Technical report, BC Innovation Council, British Columbia

    Google Scholar 

  11. IUPAC - NIST Solubility Database (2019) https://srdata.nist.gov/solubility/sol_sys_lst.aspx?goBack=Y&sysID=62110&SerialID=DS16

  12. Rasi S (2009) Biogas composition and upgrading to biomethane. Master’s thesis, University of Jyvaskyla, Jyvaskyla Finland

    Google Scholar 

  13. Bansal Pradeep, Marshall Nick (2009) Feasibility of hydraulic power recovery from waste energy in biogas scrubbing processes. Appl Energy 87(3):1048–1053

    Article  Google Scholar 

  14. Cavenati S, Grande CA, Rodrigues AE (2005) Upgrade of methane from landfill gas by pressure swing adsorption. Energy Fuels 19(6):2545–2555

    Article  Google Scholar 

  15. Miltner M, Makaruk A, Harasek M (2017) Review on available biogas upgrading technologies and innovations towards advanced solutions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.06.045

    Article  Google Scholar 

  16. Skarstrom CW (1960) Method and apparatus for fractionating gaseous mixtures by adsorption

    Google Scholar 

  17. Peterssen A, Wellinger A (2009) Biogas upgrading technologies - developments and innovations. Technical report, IEA Bioenergy

    Google Scholar 

  18. Reynolds AJ, Verheyen TV, Adeloju SB, Meuleman E, Feron P (2012) Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 46:3643–3654

    Article  Google Scholar 

  19. Lepaumier H, Picq D, Carrette PL (2009) New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2. Ind Eng Chem Res 48:9061–9067

    Article  Google Scholar 

  20. Maceiras R, Alvarez E, Angeles Cancela M (2008) Effect of temperature on carbon dioxide absorption in monoethanolamine solutions. Chem Eng J 138(1–3):295–300. https://doi.org/10.1016/j.cej.2007.05.049

    Article  Google Scholar 

  21. Barzagli Francesco, Lai Sarah, Mani Fabrizio, Stoppioni Piero (2014) Novel non-aqueous amine solvents for biogas upgrading. Energy Fuels 28:5252–5258. https://doi.org/10.1021/ef501170d

    Article  Google Scholar 

  22. Brettschneider O, Thiele R, Faber R, Thielert H, Woznya G (2004) Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3 - CO2 - H2S - NaOH - H2O. Sep Purif Technol 39(3):139–159. https://doi.org/10.1016/S1383-5866(03)00165-5

    Article  Google Scholar 

  23. Bang JH, Jang YN (2013) Method of producing carbonate using carbon dioxide microbubbles and carbonate therefor

    Google Scholar 

  24. Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35:4531–4535. https://doi.org/10.1016/j.energy.2010.04.014

    Article  Google Scholar 

  25. Diao Yong-Fa, Zheng Xian-Yu, He Bo-Shu, Chen Chang-He, Xu-Chang Xu (2004) Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers Manag 45(13–14):2283–2296

    Article  Google Scholar 

  26. Kapoor Rimika, Ghosh Pooja, Kumar Madan, Vijay Virendra (2019) Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res 26:11631–11661

    Article  Google Scholar 

  27. Gomez-Diaz D, Navaza JM, Sanjurjo B, Vazquez-Orgeira L (2006) Carbon dioxide absorption in glucosamine aqueous solutions. Chem Eng J 122:81–86

    Article  Google Scholar 

  28. Hoyer K, Hulteberg C, Svensson M, Jernberg J, Norregard O (2016) Biogas upgrading - technical review. Technical report, ENERGIFORSK

    Google Scholar 

  29. Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761

    Article  Google Scholar 

  30. ERDI (2013) Final report for biogas promotion from livestock and industrial waste. Technical report, Energy Research and Development Institute, Chiang Mai (in Thai)

    Google Scholar 

  31. Beil M, Beyrich W (2013) The Biogas Handbook, Chapter 15, pp 342–378. Woodhead Publishing Limited, Sawston. https://doi.org/10.1533/9780857097415.3.342

    Chapter  Google Scholar 

  32. Cucchiella Federica, D’Adamo Idiano, Gastaldi Massimo (2019) An economic analysis of biogas-biomethane chain from animal residues in Italy. J Clean Prod 230:888–897

    Article  Google Scholar 

  33. Kohl Arthur L, Nielsen Richard B (1997) Gas Purification, 5th edn. Gulf Professional Publishing, Houston. ISBN 978-0-88415-220-0

    Chapter  Google Scholar 

  34. Bahadori Alireza, Vuthaluru Hari B (2009) Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems. Energy 34:1910–1916

    Article  Google Scholar 

  35. Technical Committee (2013) Natural gas - organic components used as odorants - Requirements and test methods

    Google Scholar 

  36. ERDI (2014) A study on the potential of biogas from energy crops as a replacement of LPG. Technical report, Energy Research and Development Institute, Chiang Mai (in Thai)

    Google Scholar 

  37. ASME (2019) Bpvc section viii-rules for construction of pressure vessels division 1

    Google Scholar 

  38. ASME (2017) Process piping

    Google Scholar 

  39. American Water Works Association (2008) Horizontal and vertical line-shaft pumps

    Google Scholar 

  40. American Petroleum Institute (2010) Centrifugal pumps for petroleum, petrochemical and natural gas industries

    Google Scholar 

  41. American Petroleum Institute (2008) Reciprocating compressors for petroleum, chemical and gas industry services

    Google Scholar 

  42. American National Standards Institute (2017) Compressed natural gas vehicle (NGV) fueling connection devices

    Google Scholar 

  43. Gas Processors Association (2004) GPSA engineering data book. Gas Processors Suppliers Association, 12 edn,6526 E. 60th St. Tulsa, Oklahoma 74145

    Google Scholar 

  44. Jones JH, Froning HR, Claytor EE Jr (1954) Solubility of acidic gases in aqueous monoethanolamine. Chem Eng Data 4(1):85–92. https://doi.org/10.1021/je60001a012

    Article  Google Scholar 

  45. McCabe WL, Thiele EW (1925) Graphical design of fractionating columns. Ind Eng Chem 17:605–611. https://doi.org/10.1021/ie50186a023

    Article  Google Scholar 

  46. Seader JD, Henley EJ, Keith D (2010) Separation process principles, 3 edn. Wiley, New York. ISBN 978-0470481837

    Google Scholar 

  47. Sherwood TK, Shipley GH, Holloway FL (1938) Flooding velocities in packed columns. Ind Eng Chem 30(7):765–769

    Article  Google Scholar 

  48. American Concrete Institute (2001) Code requirements for environmental engineering concrete structures

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirichai Koonaphapdeelert .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koonaphapdeelert, S., Aggarangsi, P., Moran, J. (2020). Biogas Upgrading. In: Biomethane . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-8307-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8307-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8306-9

  • Online ISBN: 978-981-13-8307-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics