Skip to main content

A Concept of an Interactive Web-Based Machine Learning Tool for Individual Machine and Production Monitoring

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2019

Abstract

The main goal of each company is to generate profit and therefore it is necessary to optimize the value chain. In the manufacturing industry, the production processes have the biggest influence of the company’s success, thus every interruption in the production processes can lead to expensive consequences. Through industry 4.0 technologies it is possible to optimize the production processes by technically monitoring machines and their productions processes for example in the aspect of predictive maintenance or quality prediction. But each machine, each produced component, each prediction scenario has his own data fingerprint thus a universal machine learning scenario cannot be used. To solve this problem, an interactive web-based machine learning tool was developed, which allows to picture the corner of the fingerprints of each machine, each component in a central master data management and includes a project system where different machine learning scenarios can be defined, evaluated, and set productive. In addition, it contains an intelligent machine learning engine which automatically suggests possible machine learning algorithms for the monitoring scenario. It also includes a preprocessing engine, where static datasets can be analyzed, the optimal preprocessing parameters can be defined, and later used for the streaming data. A first evaluation of the implemented prototype shows, that it is possible to create individual machine learning projects with less work for different monitoring scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porter, M.E., Jaeger, A.: Wettbewerbsvorteile. Spitzenleistungen erreichen und behaupten. Campus Verl., Frankfurt/Main, New York (op. 1986)

    Google Scholar 

  2. Mobley, R.K.: An Introduction to Predictive Maintenance. Elsevier (2002)

    Google Scholar 

  3. Cline, B., Niculescu, R.S., Huffman, D., Deckel, B.: Predictive maintenance applications for machine learning. In: Symposium, A.R.a.M. (ed.) Annual Reliability and Maintainability Symposium 2017 proceedings, pp. 1–7. IEEE, Piscataway, NJ (2017). https://doi.org/10.1109/ram.2017.7889679

  4. Miao, Q., Makis, V.: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models. Mech. Syst. Signal Process. (2007). https://doi.org/10.1016/j.ymssp.2006.01.009

    Article  Google Scholar 

  5. Camisani-Calzolari, F.R., Craig, I.K., Pistorius, P.C.: Quality prediction in continuous casting of stainless steel slabs. J. South Afr. Inst. Min. Metall. 103(10), 651–665 (2003)

    Google Scholar 

  6. Rössle, M., Kübler, R.: Quality Prediction on Die Cast Sensor Data. Athens: ATINER’S Conference Paper Series, No: COM2017-2272 (2017)

    Google Scholar 

  7. Angela, F., Marcel, L.: Quality control in die casting with neural networks. In: Proceedings of 1st International Symposium on Neuro-Fuzzy Systems, pp. 1–7 (1996)

    Google Scholar 

  8. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. In: Springer Series in Statistics, vol. 1. New York, NY, USA (2001)

    Google Scholar 

  9. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inf. (2015). https://doi.org/10.1109/tii.2014.2349359

    Article  Google Scholar 

  10. Institute of Electrical and Electronics Engineers, Universitat Politècnica de Catalunya, IEEE Industrial Electronics Society, IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, Piscataway, NJ (2014)

    Google Scholar 

  11. Susto, G.A., Beghi, A.: Dealing with time-series data in predictive maintenance problems. In: Automation, I.I.C.o.E.T.a.F. (ed.) 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4. IEEE, [Piscataway, NJ] (2016). https://doi.org/10.1109/etfa.2016.7733659

  12. Monostori, L., Márkus, A., van Brussel, H., Westkämpfer, E.: Machine learning approaches to manufacturing. CIRP Ann. 45(2), 675–712 (1996)

    Article  Google Scholar 

  13. Accorsi, R., Manzini, R., Pascarella, P., Patella, M., Sassi, S.: Data mining and machine learning for condition-based maintenance. Procedia Manuf. (2017). https://doi.org/10.1016/j.promfg.2017.07.239

    Article  Google Scholar 

  14. Lee, T., Johnson, J., Cheng, S.: An Interactive Machine Learning Framework. CoRR abs/1610.05463 (2016)

    Google Scholar 

  15. Bunker, R.P., Thabtah, F.: A machine learning framework for sport result prediction. Appl. Comput. Inform. (2019). https://doi.org/10.1016/j.aci.2017.09.005

    Article  Google Scholar 

  16. Chang, C.-W., Dinh, N.T.: Classification of machine learning frameworks for data-driven thermal fluid models. Int. J. Therm. Sci. (2019). https://doi.org/10.1016/j.ijthermalsci.2018.09.002

    Article  Google Scholar 

  17. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. (2013). https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  18. Vojíř, S., Zeman, V., Kuchař, J., Kliegr, T.: EasyMiner.eu: Web framework for interpretable machine learning based on rules and frequent itemsets. Knowl. Based Syst. (2018). https://doi.org/10.1016/j.knosys.2018.03.006

    Article  Google Scholar 

  19. Rodriguez Molano, J.I., Contreras Bravo, L.E., Trujillo, E.R.: Supply chain architecture model based in the industry 4.0, validated through a mobile application. CES (2017). https://doi.org/10.12988/ces.2017.711186

    Article  Google Scholar 

  20. Küstner, T., Gatidis, S., Liebgott, A., Schwartz, M., Mauch, L., Martirosian, P., Schmidt, H., Schwenzer, N.F., Nikolaou, K., Bamberg, F., Yang, B., Schick, F.: A machine-learning framework for automatic reference-free quality assessment in MRI. Magn. Reson. Imaging (2018). https://doi.org/10.1016/j.mri.2018.07.003

    Article  Google Scholar 

  21. Burdack, M., Rössle, M., Kübler, R.: A concept of an in-memory database for IoT sensor data. AJS (2018). https://doi.org/10.30958/ajs.5-4-4

    Article  Google Scholar 

  22. PipelineDB Documentation—PipelineDB 1.0.0 documentation. http://docs.pipelinedb.com/. Accessed 16 Jan. 2019

  23. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)

    Google Scholar 

  24. Bernard, S., Heutte, L., Adam, S.: Influence of hyperparameters on random forest accuracy. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) Multiple Classifier Systems, pp. 171–180. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  25. The Web framework for perfectionists with deadlines | Django. https://www.djangoproject.com/. Accessed 23 Jan. 2019

  26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Dietterich, T.G., Kong, E.B.: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Technical report, Department of Computer Science, Oregon State University (1995)

    Google Scholar 

  28. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  29. Böhning, D.: Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44(1), 197–200 (1992)

    Article  Google Scholar 

  30. Wirth, R.: CRISP-DM: towards a standard process model for data mining. In: Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, pp. 29–39 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Burdack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burdack, M., Rössle, M. (2019). A Concept of an Interactive Web-Based Machine Learning Tool for Individual Machine and Production Monitoring. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2019. Smart Innovation, Systems and Technologies, vol 143. Springer, Singapore. https://doi.org/10.1007/978-981-13-8303-8_16

Download citation

Publish with us

Policies and ethics