Bioremediation: A Sustainable and Emerging Tool for Restoration of Polluted Aquatic Ecosystem

  • Bhat Mohd Skinder
  • Baba Uqab
  • Bashir Ahmad Ganai


The most important and visible factors like the population explosion, urbanization and economic growth are accountable for ecological degradation and contamination. Ecological detoxification is a riddle that needs to be solved through ecological concepts and techniques. Thus, the application of advanced science and technology helps us to apply diverse biota for pollution abatement. Diverse and potential biota has efficiency to reinstate the polluted environment effectively, but dearth of knowledge about the factors viz., pH, moisture content, temperature, redox potential, soil type and oxygen controlling the growth and metabolism of microorganism in polluted environments often limits its implementation. The enhancements in bioremediation have been realized through the help of the various areas of microbiology, biochemistry, molecular biology, analytical chemistry, chemical and environmental engineering. The techniques involved in the process of bioremediation are Ex-Situ and In-Situ, depends on the type and site of contamination. In the present context it has been revealed bioremediation plays an important role in the restoration of polluted ecosystem through environmental friendly mechanisms.


Bioremediation Phytoremediation Aquatic ecosystem Pollutants Contamination Heavy metals Bioaugmentation Biostimulation 


  1. Agarwal, S. K. (1998). Environmental biotechnology (1st ed., p. 267289). New Delhi: APH Publishing Corporation.Google Scholar
  2. Anonymous. (2009). ITRC (Interstate Technology and Regulatory Council). Phytotechnology technical and regulatory guidance and decision trees, revised. PHYTO-3. Washington DC.Google Scholar
  3. Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14, 94.CrossRefGoogle Scholar
  4. Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 180.CrossRefGoogle Scholar
  5. Baker, K. H., & Herson, D. S. (1994). Introduction and overview of bioremediation. In K. H. Baker & D. S. Herson (Eds.), Bioremediation. New York: McGraw-Hill.Google Scholar
  6. Barr, D. (2002). Biological methods for assessment and remediation of contaminated land: Case studies. London: Construction Industry Research and Information Association.Google Scholar
  7. Bhadra, R., Wayment, D. G., Hughes, J. B., & Shanks, J. V. (1999). Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environmental Science & Technology, 33, 446–452.CrossRefGoogle Scholar
  8. Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.CrossRefGoogle Scholar
  9. Boufadel, M. C., Suidan, M. T., & Venosa, A. D. (2006). Tracer studies in laboratory beach simulating tidal influences. Journal of Environmental Engineering, 132, 616–623.CrossRefGoogle Scholar
  10. Congress US. (1991). Office of technology assessment (Bioremediation for marine oil spills-background paper). Government Printing Office OTA-BP-O-70: Washington, DC.Google Scholar
  11. Cybulski, Z., Dzuirla, E., Kaczorek, E., & Olszanowski, A. (2003). The influence of emulsifiers on hydrocarbon biodegradation by Pseudomonadacea and Bacillacea strains. Spill Science and Technology Bulletin, 8, 503–507.CrossRefGoogle Scholar
  12. Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 941810.Google Scholar
  13. Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: A critical review and comparative analysis. American Journal of Environmental Sciences, 7, 423–440.CrossRefGoogle Scholar
  14. Davis, L. C., Erickson, L. E., Narayanan, N., & Zhang, Q. (2003). Modeling and design of phyto remediation. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 663–694). New York: Wiley.Google Scholar
  15. Dean-Ross, D., Moody, J., & Cerniglia, C. E. (2002). Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiology Ecology, 41, 17.CrossRefGoogle Scholar
  16. Dias, R. L., Ruberto, L., Calabro´, A., Balbo, A. L., Del-Panno, M. T., & Mac-Cormack, W. P. (2015). Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biology, 38, 677–687.CrossRefGoogle Scholar
  17. Dubey, R. C. (2004). A text book of biotechnology (3rd ed., p. 365375). New Delhi: S. Chand and Company Ltd.Google Scholar
  18. Folch, A., Vilaplana, M., Amado, L., Vicent, R., & Caminal, G. (2013). Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. Journal of Hazardous Materials, 262, 554–560.CrossRefGoogle Scholar
  19. Frascari, D., Zanaroli, G., & Danko, A. S. (2015). In situ aerobic cometabolism of chlorinated solvents: A review. Journal of Hazardous Materials, 283, 382–399.CrossRefGoogle Scholar
  20. Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.Google Scholar
  21. Gadd, G. M. (2001). Fungi in bioremediation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Gidarakos, E., & Aivalioti, M. (2007). Large scale and long term application of bioslurping: The case of a Greek petroleum refinery site. Journal of Hazardous Materials, 149, 574–581.CrossRefGoogle Scholar
  23. Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: Fundamentals of applied microbiology (2nd ed., p. 510528). Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
  24. Gomez, F., & Sartaj, M. (2014). Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). International Biodeterioration & Biodegradation, 89, 103–109.CrossRefGoogle Scholar
  25. Hamer, G. (1993). Bioremediation: A response to gross environmental abuse. Trends in Biotechnology, 11(8), 317–319.CrossRefGoogle Scholar
  26. Hess, A., Zarda, B., Hahn, D., Häner, A., Stax, D., Höhener, P., & Zeyer, J. (1997, June). In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Applied and Environmental Microbiology, 63(6), 2136–2141.Google Scholar
  27. Hillel, D. (1998). Environmental soil physics. Waltham: Academic.Google Scholar
  28. Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.CrossRefGoogle Scholar
  29. Husain, Q., Husain, M., & Kulshrestha, Y. (2009). Remediation and treatment of organopollutants mediated by peroxidases: A review. Critical Reviews in Biotechnology, 29(2), 94–119.CrossRefGoogle Scholar
  30. Ijah, U. J. J. (2002). Accelerated crude oil biodegradation in soil by inoculation with bacterial slurry. Journal of Environmental Sciences, 6(1), 3847.Google Scholar
  31. Jogdand, S. N. (1995). Environmental biotechnology (1st ed., p. 1041). Bombay: Himalaya Publishing House.Google Scholar
  32. Kamaludeen, S. P. B. K., Arunkumar, K. R., Avudainayagam, S., & Ramasamy, K. (2003). Bioremediation of chromium contaminated environments. The Indian Journal of Experimental Biology, 41, 972–985.Google Scholar
  33. Kim, S., Krajmalnik-Brown, R., Kim, J. O., & Chung, J. (2014). Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Science of the Total Environment, 497, 250–259.CrossRefGoogle Scholar
  34. Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Uptake, translocation and effects of contaminants in plants. In Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation (pp. 55–102). Berlin/New York: Springer.Google Scholar
  35. Lal, B., & Khanna, S. (1996). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. Journal of Applied Bacteriology, 81(4), 355–362.CrossRefGoogle Scholar
  36. Lee, S. H., Lee, S., Kim, D. Y., & Kim, J. G. (2007). Degradation characteristics of waste lubricants under different nutrient conditions. Journal of Hazardous Materials, 143(1–2), 65–72.CrossRefGoogle Scholar
  37. Macek, T., Mackova, M., & Káš, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18(1), 23–34.CrossRefGoogle Scholar
  38. Mbhele, P. P. (2007). Remediation of soil and water contaminated by heavy metals and hydrocarbons using silica encapsulation. Doctoral dissertation, University of Witwatersrand, Johannesburg.Google Scholar
  39. Mesa, J., Rodrı´guez-Llorente, J. D., Pajuelo, E., Piedras, J. M. B., Caviedes, M. A., Redondo-Go´mez, S., & Mateos-Naranjo, E. (2015). Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. Journal of Hazardous Materials, 300, 263–271.CrossRefGoogle Scholar
  40. Mohan, S. V., Sirisha, K., Rao, N. C., Sarma, P. N., & Reddy, S. J. (2004). Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: Bioprocess monitoring. Journal of Hazardous Materials, 116(1–2), 39–48.CrossRefGoogle Scholar
  41. Morel, J. L., Echevarria, G., & Goncharova, N. (Eds.). (2002). Phytoremediation of metal-contaminated soils (Vol. 68). Dordrecht: Springer Science and Business Media.Google Scholar
  42. National Research Council, Division on Engineering and Physical Sciences, Commission on Engineering and Technical Systems, Committee on In Situ Bioremediation. National Academies Press, February 01, 1993.Google Scholar
  43. Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Option in Biotechnology, 15, 225–230.CrossRefGoogle Scholar
  44. Nikolopoulou, M., Pasadakis, N., Norf, H., & Kalogerakis, N. (2013). Enhanced ex-situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Marine Pollution Bulletin, 77, 37–44.CrossRefGoogle Scholar
  45. Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259.CrossRefGoogle Scholar
  46. Ojuederie, O., & Babalola, O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12), 1504.CrossRefGoogle Scholar
  47. Paniagua-Michel, J., & Rosales, A. (2015). Marine bioremediation-A sustainable biotechnology of petroleum hydrocarbons biodegradation in coastal and marine environments. Journal of Bioremediation and Biodegredation, 6(2), 1.Google Scholar
  48. Park, A. J., Cha, D. K., & Holsen, T. M. (1998). Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis. Water Environment Research, 70(3), 351–355.CrossRefGoogle Scholar
  49. Paudyn, K., Rutter, A., Rowe, R. K., & Poland, J. S. (2008). Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Regions Science and Technology, 53(1), 102–114.CrossRefGoogle Scholar
  50. Philp, J. C., & Atlas, R. M. (2005). Bioremediation of contaminated soils and aquifers. In R. M. Atlas & J. C. Philp (Eds.), Bioremediation: Applied microbial solutions for real-world environmental cleanup (pp. 139–236). Washington: American Society for Microbiology (ASM) Press.CrossRefGoogle Scholar
  51. Pichtel, J. (2007). Fundamentals of site remediation: For metal and hydrocarbon-contaminated soils. New York: Government Institutes.Google Scholar
  52. Prasad, M. N. (2004a). Phytoremediation of metals in the environment for sustainable development. Proceedings-Indian National Science Academy Part B, 70(1), 71–98.Google Scholar
  53. Prasad, M. N. V. (2004b). Heavy metal stress in plants: From biomolecules to ecosystems (2nd ed., 462 pp). Heidelberg: Springer.Google Scholar
  54. Prescott, L. M., Harley, J. P., & Klein, D. A. (2002). Microbiology (5th ed., p. 1014). New York: McGrawHill.Google Scholar
  55. Raskin, I., Kumar, P. B. A. N., Dushenkov, S., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5, 285–290.CrossRefGoogle Scholar
  56. Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem, 1, 708–717.CrossRefGoogle Scholar
  57. Rike, A. G., Schiewer, S., & Filler, D. M. (2008). Temperature effects on biodegradation of petroleum contaminants in cold soils. In Bioremediation of petroleum hydrocarbons in cold regions (pp. 84–108). Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
  58. Roy, M., Giri, A. K., Dutta, S., & Mukherjee, P. (2015). Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International, 75, 180–198.CrossRefGoogle Scholar
  59. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643–668.CrossRefGoogle Scholar
  60. Sara, M. N. (2003). Site assessment and remediation handbook. Boca Raton: Lewis Publishers/CRC Press.CrossRefGoogle Scholar
  61. Shanahan, P. (2004, Spring). Bioremediation; waste containment and remediation technology. Massachusetts Institute of Technology.Google Scholar
  62. Sharma, S. (2012). Bioremediation: Features, strategies and applications. Asian Journal of Pharmacy and Life Science, 2(2), 4423.Google Scholar
  63. Silva-Castro, G. A., Uad, I., Rodríguez-Calvo, A., González-López, J., & Calvo, C. (2015). Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental Research, 137, 49–58.CrossRefGoogle Scholar
  64. Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine related distillery wastewaters: A review. Bioremediation Journal, 12, 7087.CrossRefGoogle Scholar
  65. Suthersan, S. S., Horst, J., Schnobrich, M., Welty, N., & McDonough, J. (2016). Remediation engineering: Design concepts. Boca Raton: CRC Press.CrossRefGoogle Scholar
  66. Tang, C. Y., Fu, Q. S., Criddle, C. S., & Leckie, J. O. (2007). Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science and Technology, 41(6), 2008–2014.CrossRefGoogle Scholar
  67. Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2), 145–156.CrossRefGoogle Scholar
  68. Tyagi, M., da Fonseca, M. M., & de Carvalho, C. C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231–241.CrossRefGoogle Scholar
  69. Van Aken, B. (2009). Transgenic plants for enhanced phytoremediation of toxic explosives. Current Opinion in Biotechnology, 20(2), 231–236.CrossRefGoogle Scholar
  70. Vázquez, S., Agha, R., Granado, A., Sarro, M. J., Esteban, E., Penalosa, J. M., & Carpena, R. O. (2006). Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water, Air, and Soil Pollution, 177(1–4), 349–365.CrossRefGoogle Scholar
  71. Verma, J. P., & Jaiswal, D. K. (2006). Book review: Advances in biodegradation and bioremediation of industrial waste. Frontiers in Microbiology, 6, 1555.Google Scholar
  72. Verma, P., George, K. V., Singh, H. V., Singh, S. K., Juwarkar, A., & Singh, R. N. (2006). Modeling rhizofiltration: Heavy-metal uptake by plant roots. Environmental Modeling and Assessment, 11(4), 387–394.CrossRefGoogle Scholar
  73. Vidali, M. (2001). Bioremediation an overview. Pure and Applied Chemistry, 73(7), 1163–1172.CrossRefGoogle Scholar
  74. Volpe, A., D’Arpa, S., Del Moro, G., Rossetti, S., Tandoi, V., & Uricchio, V. F. (2012). Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water, Air, & Soil Pollution, 223(4), 1773–1782.CrossRefGoogle Scholar
  75. Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K., & Harayama, S. (2000). Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Applied and Environmental Microbiology, 66(11), 4803–4809.CrossRefGoogle Scholar
  76. Whelan, M. J., Coulon, F., Hince, G., Rayner, J., McWatters, R., Spedding, T., & Snape, I. (2015). Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere, 131, 232–240.CrossRefGoogle Scholar
  77. Zahed, M. A., Aziz, H. A., Isa, M. H., & Mohajeri, L. (2010). Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater. Bulletin of Environmental Contamination and Toxicology, 84(4), 438–442.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Bhat Mohd Skinder
    • 1
  • Baba Uqab
    • 1
  • Bashir Ahmad Ganai
    • 1
  1. 1.Department of Environmental Science/Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia

Personalised recommendations