Fresh Water Pollution Dynamics and Remediation pp 123-142 | Cite as
Role of Biotools in Restoration of Freshwater Ecosystems
- 1 Citations
- 334 Downloads
Abstract
Climate change, rapidly increasing population and depleting water resources have resulted in prolonged floods and droughts that have resulted in drinking water becoming a cut-throat resource. The ability of toxins to accumulate in the aquatic systems is a vital concern for environmental safety. In this connection, the newest approaches in biotechnology have been employed which include biomineralization, biosorption, phytostabilization, hyperaccumulation, biostimulation, mycoremediation, cyanoremediation and genoremediation. The ample renovation of the environment requires incorporation, assimilation and assistance of these advances along with conventional methods so as to ascertain the mystery of nature. Besides, the need of water industry is to ensure economical and constant supply of fresh water in adequate amounts. The present book chapter will provide better understanding of the problems associated with the toxicity of freshwater ecosystems as well as the feasible and eco-friendly technologies required for cleaning up of the water resources. However, the challenges involved in adopting the new initiatives for cleaning the polluted freshwater ecosystems from both greener and natural point of view must not be ignored.
Keywords
Biomarker Bioremediation Biotransformation Freshwater Toxic metals GenoremediationReferences
- Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37, 1601–1605.CrossRefGoogle Scholar
- Achal, V., Pan, X., & Zhang, D. (2012a). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89, 764–768.CrossRefGoogle Scholar
- Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012b). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 202, 178–184.CrossRefGoogle Scholar
- Adams, J. A., & Reddy, K. R. (2003). Extent of benzene biodegradation in saturated soil column during air sparging. Groundwater Monitoring and Remediation, 23(3), 85–94.CrossRefGoogle Scholar
- Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243–2257.CrossRefGoogle Scholar
- Anouti, F. A. (2014). Concerns regarding food biotechnology: An ongoing debate. Journal of Biodiversity, Bioprospecting and Development, 1, 106.CrossRefGoogle Scholar
- Baldwin, B. R., Peacock, A. D., Park, M., & Ogles, D. M. (2008). Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water, 46, 295–304.CrossRefGoogle Scholar
- Barbier, E. B., Acreman, M., & Knowler, D. (1997). Economic valuation of wetlands: A guide for policy makers and planners (127 pp). Gland: Ramsar Convention Bureau.Google Scholar
- Bhattacharyya, D., Hestekin, J. A., Brushaber, P., Cullen, L., Bachas, L. G., & Sikdar, S. K. (1998). Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science, 141, 121–135.CrossRefGoogle Scholar
- Brim, H., McFarlan, S. C., Fredrickson, J. K., Minton, K. W., & Zhai, M. (2000). Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnology, 18, 85–90.CrossRefGoogle Scholar
- Chauhan, A., & Jain, R. K. (2010). Biodegradation: Gaining insight through proteomics. Biodegradation, 21, 861–879.CrossRefGoogle Scholar
- Chen, W., Mulchandani, A., & Deshusses, M. A. (2005). Environmental biotechnology: Challenges and opportunities for chemical engineers. AICHE Journal, 51, 690–695.CrossRefGoogle Scholar
- Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials, 34, 1364–1371.CrossRefGoogle Scholar
- Cheng, S. S., Hsieh, T. L., Pan, P. T., Gaop, C. H., Chang, L. H., Whang, L. M., & Chang, T. C. (2009). Study on biomonitoring of aged TPHcontaminated soil with bioaugmentation and biostimulation (Conference paper). In 10th international in situ and on-site bioremediation symposium, Baltimore MD, May 5–8.Google Scholar
- Choudhary, S., & Sar, P. (2011). Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. Journal of Hazardous Materials, 186, 336–343.CrossRefGoogle Scholar
- Dary, M., Chamber-Perez, M. A., Palomares, A. J., & Pajuelo, E. (2010). “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177(1–3), 323–330.CrossRefGoogle Scholar
- DeFriend, K. A., Wiesner, M. R., & Barron, A. R. (2003). Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. Journal of Membrane Science, 224, 11–28.CrossRefGoogle Scholar
- Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143(1–2), 220–225.CrossRefGoogle Scholar
- Dong, G., Wang, Y., Gong, L., Wang, M., Wang, H., He, N., Zheng, Y., & Li, Q. (2013). Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochemical Engineering Journal, 70, 166–172.CrossRefGoogle Scholar
- Dubey, S. K., Dubey, J., Mehra, S., Tiwari, P., & Bishwas, A. J. (2011). Potential use of cyanobacterial species in bioremediation of industrial effluents. African Journal of Biotechnology, 10(7), 1125–1132.Google Scholar
- Dudhane, M., Borde, M., & Jite, P. K. (2012). Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb inoculated with AM Fungi. International Journal of Phytoremediation, 14(7), 643–655.CrossRefGoogle Scholar
- Duong, T. T. T., Verma, S. L., Penfold, C., & Marschner, P. (2013). Nutrient release from composts into the surrounding soil. Geoderma, 195–196, 42–47.CrossRefGoogle Scholar
- Eijkel, J. C. T., & van den Berg, A. (2005). Nanofluidics: What is it and what canwe expect from it. Microfluidics and Nanofluidics, 1(3), 249–267.CrossRefGoogle Scholar
- Ekmekyapar, F., Aslan, A., Bayhan, Y. K., & Cakici, A. (2012). Biosorption of Pb(II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. International Journal of Environmental Research, 6(2), 417–424.Google Scholar
- Ernst, W. H. O. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80, 251–274.Google Scholar
- Fiset, J. F., Blais, J. F., & Riverso, P. A. (2008). Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Revue des Sciences de l’Eau, 21(3), 283–308.CrossRefGoogle Scholar
- Fulekar, M. H., Sharma, J., & Tendulkar, A. (2012). Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environmental Monitoring and Assessment, 184(12), 7299–7307.CrossRefGoogle Scholar
- Gautam, P., Madathil, D., & Nair, A. N. B. (2013). Nanotechnology in waste water treatment: A review. International Journal of ChemTech Research, 5, 2303–2308.Google Scholar
- Govarthanan, M., Lee, K. J., Cho, M., Kim, J. S., Kamala-Kannan, S., & Oh, B. T. (2013). Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere, 8, 2267–2272.CrossRefGoogle Scholar
- Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., & He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599–8605.CrossRefGoogle Scholar
- Hazen, T. C. (2010). In situ: Groundwater bioremediation. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 2583–2594). Berlin: Springer.CrossRefGoogle Scholar
- Hollman, A. M., & Bhattacharyya, D. (2004). Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation. Langmuir, 20, 5418–5424.CrossRefGoogle Scholar
- Hrynkiewicz, K., Dabrowska, G., Baum, C., Niedojadlo, K., & Leinweber, P. (2012). Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by Willows. Water, Air, and Soil Pollution, 223, 957–968.CrossRefGoogle Scholar
- Jeffries, T. C., Seymour, J. R., Newton, K., Smith, R. J., Seuront, L., & Mitchell, J. G. (2012). Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosciences, 9(2), 815–825.CrossRefGoogle Scholar
- Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of heavy metal resistant Burkholderia species from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere, 72, 157–164.CrossRefGoogle Scholar
- Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International Journal of Environmental Science and Technology, 9, 183–193.CrossRefGoogle Scholar
- Kastenhofer, K. (2007). Converging epistemic cultures? Innovations, 20(4), 359–373.Google Scholar
- Kensa, M. V. (2011). Bioremediation: An overview. Journal of Industrial Pollution Control, 27(2), 161–168.Google Scholar
- Kumar, C., & Mani, D. (2010). Enrichment and management of heavy metals in sewage irrigated soil. Saarbrucken: LAP LAMBERT Academic Publishing AG & KG.Google Scholar
- Kumar, C., & Mani, D. (2012). Advances in bioremediation of heavy metals: A tool for environmental restoration. Saarbrucken: LAP LAMBERT Academic Publishing AG & KG.Google Scholar
- Kumar, R., Joshi, S. R., & Acharya, C. (2008). Metal tolerant Bacillus and Pseudomonas from uranium rich soils of Meghalaya. Research Journal of BioTechnology (Special Issue), 345–350.Google Scholar
- Kumar, R., Acharya, C., & Joshi, S. R. (2011). Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(VI) bioadsorption. Journal of Microbiology, 49(4), 568–574.CrossRefGoogle Scholar
- Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011a). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1(6), 1079–1093.Google Scholar
- Lee, Y. C., & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102(9), 5297–5304.CrossRefGoogle Scholar
- Lee, C. S., Li, X. D., Shi, W. Z., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.CrossRefGoogle Scholar
- Li, L., Cunningham, C. J., Pas, V., Philp, J. C., Barry, D. A., & Anderson, P. (2004). Field trial of a new aeration system for enhancing biodegradation. Waste Management, 24, 127–137.CrossRefGoogle Scholar
- Loukidou, M. X., Matis, K. A., Zouboulis, A. I., & Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 37(18), 4544–4552.CrossRefGoogle Scholar
- Ma, X., Nonvak, P. J., Ferguson, J., Sadowsky, M., et al. (2007). The impact of H2 addition or dechlorinating microbial communities. Bioremediation Journal, 11, 45–55.CrossRefGoogle Scholar
- Machackova, J., Wittlingerova, Z., Vlk, K., & Zima, J. (2012). Major factors affecting in situ biodegradation rates of jet-fuel during largescale biosparging project in sedimentary bedrock. Journal of Environmental Science and Health, Part A, 47(8), 1152–1165.CrossRefGoogle Scholar
- Machado, M. D., Soares, E. V., & Soares, H. M. V. M. (2010). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 180(1–3), 347–353.CrossRefGoogle Scholar
- Mane, P. C., & Bhosle, A. B. (2012). Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. International Journal of Environmental Research, 6(2), 571–576.Google Scholar
- Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11, 843–872.CrossRefGoogle Scholar
- Mapanda, F., Mangwayana, E. N., Nyanangara, J., & Giller, K. E. (2005). The effect of long-term irrigation using wastewater on the heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agriculture, Ecosystems & Environment, 107, 151–165.CrossRefGoogle Scholar
- Masciangioli, T., & Zhang, W. X. (2003). Peer reviewed: Environmental technologies at the nanoscale. Environmental Science & Technology, 37, 102A–108A.CrossRefGoogle Scholar
- Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3, 153–162.CrossRefGoogle Scholar
- Nasr, M., & Ismail, S. (2015). Performance evaluation of sedimentation followed by constructed wetlands for drainage water treatment. Sustainable Environment Research, 25, 141–150.Google Scholar
- Norstrom, A., Larsdotter, K., Gumaelius, L., Jansen, J. L. C., & Dalhammar, G. (2004). A small scale hydroponics wastewater treatment system under Swedish conditions. Water Science and Technology, 48(11–12), 161–167.CrossRefGoogle Scholar
- O’Loughlin, E. J., Traina, S. J., & Sims, G. K. (2000). Effects of sorption on the biodegradation of 2-methylpyridine. Environmental Toxicology and Chemistry, 19, 2168–2174.CrossRefGoogle Scholar
- Paliwal, V., Puranik, S., & Purohit, H. J. (2012). Integrated perspective of effective bioremediation. Applied Biochemistry and Biotechnology, 166, 903–924.CrossRefGoogle Scholar
- Pan, X. L. (2009). Microbially induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment. Research Journal of Chemistry and Environment, 13, 3–4.Google Scholar
- Prasad, M. N. V. (2004). Heavy metal stress in plants: From biomolecules to ecosystems (2nd ed.). Heidelberg: Springer.CrossRefGoogle Scholar
- Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47, 3931–3946.CrossRefGoogle Scholar
- Ramasamy, R. K., Congeevaram, S., & Thamaraiselvi, K. (2011). Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metals Pb(II) ions and fungal protein molecular characterization-a mycoremediation approach. Asian Journal of Biological Sciences, 2(2), 342–347.Google Scholar
- Ramos, J. L., Marques, S., Dillewijn, P. V., Espinosa-Urgel, M., Segura, A., & Duque, E. (2011). Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology, 29(12), 641–647.CrossRefGoogle Scholar
- Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23, 917–926.CrossRefGoogle Scholar
- Rickerby, D. G., & Morrison, M. (2007). Nanotechnology and the environment: A European perspective. Science and Technology of Advanced Materials, 8, 19–24.CrossRefGoogle Scholar
- Ritchie, S. M. C., Bachas, L. G., Olin, T., Sikdar, S. K., & Bhattacharyya, D. (1999). Surface modification of silica- and cellulosebased microfiltration membranes with functional polyamino acids for heavy metal sorption. Langmuir, 15, 6346–6357.CrossRefGoogle Scholar
- Ritchie, S. M. C., Kissick, K. E., Bachas, L. G., Sikdar, S. K., Parikh, C., & Bhattacharyya, D. (2001). Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture. Environmental Science and Technology, 35, 3252–3258.CrossRefGoogle Scholar
- Riu, J., Maroto, A., & FX, X. R. (2006). Nanosensors in environmental analysis. Talanta, 69, 288–301.CrossRefGoogle Scholar
- Robinson, C., Bromssen, M. V., Bhattacharya, P., Haller, S., Biven, A., Hossain, M., Jacks, G., Ahmed, K. M., Hasan, M. A., & Thunvik, R. (2011). Dynamics of arsenic adsorption in the targeted arsenic-safe aquifers in Matlab, south-eastern Bangladesh: Insight from experimental studies. Applied Geochemistry, 26, 624–635.CrossRefGoogle Scholar
- Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.CrossRefGoogle Scholar
- Saunders, R. J., Paul, N. A., Hu, Y., & de Nys, R. (2012). Sustainable sources of biomass for bioremediation of heavy metals in wastewater derived from coal-fired power generation. PLoS One, 7(5), e36470. https://doi.org/10.1371/journal.pone.0036470.CrossRefGoogle Scholar
- Savage, N., & Diallo, M. S. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7, 331–342.CrossRefGoogle Scholar
- Say, R., Yimaz, N., & Denizli, A. (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Adsorption Science and Technology, 21, 643–650.CrossRefGoogle Scholar
- Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., & Johnson, C. A. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077.CrossRefGoogle Scholar
- Segura, P. A., Francois, M., Gagnon, C., & Sauve, S. (2009). Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environmental Health Perspectives, 117, 675–684.CrossRefGoogle Scholar
- Shirdam, R., Khanafari, A., & Tabatabaee, A. (2006). Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iranian Journal of Biotechnology, 4(3), 180–187.Google Scholar
- Siegrist, H., Ternes, T. A., & Joss, A. (2004). Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Journal of Environmental Science and Technology, 38, 392A–399A.CrossRefGoogle Scholar
- Singh, J. S., Abhilash, P. C., Singh, H. B., Singh, R. P., & Singh, D. P. (2011). Genetically engineered bacteria: An emerging tool for environmental remediation and future research perspectives. Gene, 480, 1–9.CrossRefGoogle Scholar
- Singhal, R. K., Joshi, S., Tirumalesh, K., & Gurg, R. P. (2004). Reduction of uranium concentration in well water by Chlorella (Chlorella pyrenoidosa) a fresh water algae immobilized in calcium alginate. The Journal of Radioanalytical and Nuclear Chemistry, 261, 73–78.CrossRefGoogle Scholar
- Stamets, P. (2005). Mycelium running: How mushroom can help save the world. New York: Ten Speed Press, Crown Publishing Group.Google Scholar
- Tang, C. Y., Criddle, Q. S., Fu, C. S., & Leckie, J. O. (2007). Effect of flux (Transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology, 41, 2008–2014.CrossRefGoogle Scholar
- Tastan, B. E., Ertugrul, S., & Donmez, G. (2010). Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresource Technology, 101(3), 870–876.CrossRefGoogle Scholar
- Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34, 43–69.CrossRefGoogle Scholar
- Tong, A., Peake, B., & Braund, R. (2011). Disposal practices for unused medications around the world. Environment International, 37, 292–298.CrossRefGoogle Scholar
- Tripathi, R. D., Dwivedi, S., Shukla, M. K., Mishra, S., Srivastava, S., Singh, R., Rai, U. N., & Gupta, D. K. (2008). Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 70, 1919–1929.CrossRefGoogle Scholar
- Tyagi, M., Fonseca, M. M. R. D., & Carvalho, C. C. C. R. D. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241.CrossRefGoogle Scholar
- UNEP. (2012). Global environment outlook 5—Environment for the future we want. Nairobi: United Nations Environment Programme.Google Scholar
- USEPA. (2004). Cleaning up the nation’s waste sites: Markets and technology trends. Washington: US Environmental Protection Agency.Google Scholar
- Vaseashta, A., Vaclavikova, M., Vaseashta, S., Gallios, G., Roy, P., & Pummakarnchana, O. (2007). Nanostructures in environmental pollution detection, monitoring, and remediation. Science and Technology of Advanced Materials, 8, 47–59.CrossRefGoogle Scholar
- Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172.CrossRefGoogle Scholar
- Vullo, D. L., Ceretti, H. M., Hughes, E. A., Ramyrez, S., & Zalts, A. (2008). Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresource Technology, 99, 5574–5581.CrossRefGoogle Scholar
- Weber, W. J. (2002). Distributed optimal technology networks: A concept and strategy for potable water sustainability. Water Science and Technology, 46, 241–246.CrossRefGoogle Scholar
- Yin, X. X., Wang, L. H., Bai, R., Huang, H., & Sun, G. X. (2012). Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water, Air, and Soil Pollution, 223(3), 1183–1190.CrossRefGoogle Scholar