Fresh Water Pollution Dynamics and Remediation pp 105-121 | Cite as
Impact of Climate Change on Freshwater Ecosystem and Its Sustainable Management
- 489 Downloads
Abstract
Freshwater ecosystems are vital for global biodiversity and ecosystem services. Freshwater ecosystems are susceptible to the impacts of environmental change, which may cause irreversible damage to these ecosystems upon which huge amount of biodiversity and ecosystem services are dependent. Within the next few decades the climate change will have considerable ecological impacts on most of the fresh water ecosystems as per the current climatic predictions. Different freshwater ecosystems will be affected differently by climate change. One of the most important and major impact to be caused by climate change will be on fresh water flow regime. The speed of climate change will be abrupt and uneven rather than slow and even. Impacts caused by climate change on freshwater ecosystems will be visible both physically and chemically. It is very hard and more complex to forecast the impact on freshwater recourses due to climate change. In most of the cases, climate change together with other man made pressures will cause much damage to freshwater ecosystems. It is very difficult to predict impact of climate change on freshwater ecosystems in the next few decades using current global climate models. Rather than focusing on impact assessment a risk–based approach should be adopted to assess and respond to climate change. A number of measures are required to protect freshwater ecosystems such as reducing extraction of water from ground and surface water, maintaining water flows, management of macrophytes, artificial oxygenation and mixing, sediment removal etc. so that fresh water ecosystems are not affected largely by small climate induced changes. When a diversity of healthy habitats of freshwater ecosystems can be maintained, the assimilative ability of freshwater ecosystems will be further strengthened. Incorporation of long lasting, observed study data with models and manipulative experiments will assist the progress of mechanistic, and hence predictive, perceptive of responses to future climate change.
Keywords
Freshwater Ecosystem Biodiversity Management MacrophytesReferences
- Abell, R., Thieme, M., Dinerstein, E., & Olson, D. (2002). A sourcebook for conducting biological assessments and developing biodiversity visions for eco-region conservation (Volume II: Freshwater eco-regions) (201 pp). Washington, DC: World Wildlife Fund.Google Scholar
- Arnell, N., Liu, C., et al. (2001). Chapter 4: Hydrology and water resources. In J. Mc-Carthy, O. Canziana, N. Leary, D. Dokken, & K. White (Eds.), Climate change (2001): Impacts, adaptation, and vulnerability (pp. 191–233). Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
- Atkinson, D. (1995). Effects of temperature on the size of aquatic ectotherms: Exceptions to the general rule. Journal of Thermal Biology, 20(1/2), 61–74.CrossRefGoogle Scholar
- Baron, J. S., Poff, N. L., Angermeier, P. L., Dahm, C. N., Gleick, P. H., Hairston, N. G., Jr., Jackson, R. B., Johnston, C. A., Richter, B. D., & Steinman, A. D. (2003). Sustaining healthy freshwater ecosystems. Issues in Ecology, 10, 1–16.Google Scholar
- Beebee, T. J. C. (1995). Amphibian breeding and climate change. Nature, 374, 219–220.CrossRefGoogle Scholar
- Belk, D., & Fugate, M. (2000). Two new Branchinecta (Crustacea: Anostraca) from the southwestern United States. The Southwestern Naturalist, 45(2), 111–117.CrossRefGoogle Scholar
- Biggs, R., Carpenter, R., & Brock, W. R. (2009). Turning back from the brink: Detecting an impending regime shift in time to avert it. Proceedings of the National Academy of Sciences USA, 106, 826–831.CrossRefGoogle Scholar
- Boix-Fayos, C., Calvo-Cases, A., Imeson, A. C., Soriano Soto, M. D., & Tiemessen, I. R. (1998). Spatial and short-term temporal variations in runoff, soil aggregation and other soil properties along a Mediterranean climatological gradient. Catena, 33, 123–138.CrossRefGoogle Scholar
- Boon, P. J., & Raven, P. J. (2012). River conservation and management. London: Wiley-Blackwell.CrossRefGoogle Scholar
- Butler, R. W., & Vennesland, R. G. (2000). Integrating climate change and predation risk with wading bird conservation research in North America. Waterbirds, 23(3), 535–540.CrossRefGoogle Scholar
- Carpenter, S. R., Fisher, S. G., Grimm, N. B., & Kitchell, J. F. (1992). Global change and freshwater ecosystems. Annual Review of Ecology and Systematics, 23, 119–139.CrossRefGoogle Scholar
- Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W. A., Cline, A., Coloso, J., & Hodgson, H. R. (2011). Early warnings of regime shifts: A whole-ecosystem experiment. Science, 332, 1079–1082.CrossRefGoogle Scholar
- Conover, D. O. (1984). Adaptive significance of temperature-dependent sex determination in a fish. American Naturalist, 123(3), 297–313.CrossRefGoogle Scholar
- Covich, A. P., Austen, M. C., Bärlocher, F., Chauvet, E., Cadrinale, B. J., Biles, C. L., Inchausti, P., & Dangels, O. (2004). The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience, 54, 767–775.CrossRefGoogle Scholar
- De Groot, R. S., & Ketner, P. (1994). Sensitivity of NW European species and ecosystems to climate change and some implications for nature conservation and management. In J. Pernetta, R. Leemans, D. Elder, & S. Humphrey (Eds.), Impacts of climate change on ecosystems and species: Implications for protected areas (pp. 28–53). Gland: The World Conservation Union (IUCN), Gland.Google Scholar
- Dettinger, M. D., & Cayan, D. R. (1995). Large-scale forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606–623.CrossRefGoogle Scholar
- Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., & Follard, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277, 364–367.CrossRefGoogle Scholar
- Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.CrossRefGoogle Scholar
- Firth, P., & Fisher, S. G. (1992). Global change and freshwater ecosystems. New York: Springer.CrossRefGoogle Scholar
- Gibbs, J. P. (1993). Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands, 13, 25–31.CrossRefGoogle Scholar
- Gilbert, O. L., & Anderson, P. (1998). Habitat creation and repair (288 pp). New York: Oxford University Press.Google Scholar
- Gillson, L., Dawson, T. P., Jack, S., & McGeoch, M. A. (2013). Accommodating global change contingencies in conservation strategy. Trends in Ecology and Evolution, 28, 135–142.CrossRefGoogle Scholar
- Glen, G. (2010). The impact of global change on European lakes. New York: Springer.Google Scholar
- Hansen, G., & Cramer, W. (2015). Global distribution of observed climate change impacts. Nature Climate Change, 5, 182–185.CrossRefGoogle Scholar
- Henderson, M. A., Levy, D. A., & Stockner, J. S. (1992). Probably consequences of climate change on freshwater production of Adams River sockeye salmon. Geo Journal, 28(1), 51–59.Google Scholar
- Herman, T. B., & Scott, F. W. (1994). Protected areas and global climate change: assessing the regional or local vulnerability of vertebrate species. In J. Pernetta, R. Leemans, D. Elder, & S. Humphrey (Eds.), Impacts of climate change on ecosystems and species: Implications for protected Areas (pp. 13–27). Gland: The World Conservation Union (IUCN).Google Scholar
- Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., & Xiaosu, V. (Eds.) (2001). Climate change: The scientific basis. Intergovernmental Panel on Climate Change: Working Group I. Cambridge: Cambridge University Press. 881 pp.Google Scholar
- Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A., & van Nes, E. H. (2013). Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology & Evolution, 28, 149–155.CrossRefGoogle Scholar
- Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83–95.CrossRefGoogle Scholar
- Junk, W. J. (2002). Long-term environmental trends and the future of tropical wetlands. Environmental Conservation, 29(4), 414–435.CrossRefGoogle Scholar
- Kaser, G., Hastenrath, S., & Ames, A. (1996). Mass balance profiles on tropical glaciers. Zeitschrift für Gletscherkundeund Glazialgeologie, 32, 75–81.Google Scholar
- Kitchell, J. F. (Ed.). (1992). Food web management: A case study of Lake Mendota (553 pp). New York: Springer.Google Scholar
- Lehmkuhl, D. M. (1974). Thermal regime alterations and vital environmental physiological signals in aquatic systems. In J. W. Gibbons & R. R. Sharitz (Eds.), Thermal ecology. Atomic energy commission symposium series, CONF-730505, Augusta, GA, USA (pp. 216–222).Google Scholar
- Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin, N. G., Prowse, T. D., Stewart, K. M., & Vuglinski, V. S. (2000). Historical trends in lake and river cover in the Northern Hemisphere. Science, 289, 1743–1746.CrossRefGoogle Scholar
- Malcolm, J. R., & Markham, A. (2000). Global warming and terrestrial biodiversity decline. A report prepared for the WWF. http://www.panda.org/downloads/climate_change/speedkills_c6s8.pdf
- Matthews, W. J., & Zimmerman, E. G. (1990). Potential effects of global warming on native fishes of the southern Great Plains and the southwest. Fisheries, 15(6), 26–32.CrossRefGoogle Scholar
- McCarty, J. P., & Zedler, J. B. (2002). Restoration, ecosystem. In H. A. Mooney & J. G. Canadell (Eds.), The earth system: Biological and ecological dimensions of global environmental change (Vol. 2, pp. 532–539). Chichester: Wiley.Google Scholar
- Meehl, G. A., Karl, T., Easterling, D. R., Changnon, S., Pielke, J. R., Changnon, D., Evans, J., Groisman, P. Y., Knutson, T. R., Kunkel, K. E., Mearns, L. O., Parmesan, C., Pulwarty, R., Root, T., Sylves, R. T., Whetton, P., & Zwiers, F. (2000). An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bulletin of the American Meteorological Society, 81(3), 413–416.CrossRefGoogle Scholar
- Meerhoff, et al. (2012). Environmental warming in shallow lakes: A review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research, 46, 259–394.CrossRefGoogle Scholar
- Michener, W. K., Blood, E. R., Bildstein, K. L., Brinson, M. M., & Gardner, L. R. (1997). Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications, 7, 770–801.CrossRefGoogle Scholar
- Moss, B. (2000). Biodiversity in fresh waters—An issue of species preservation or system functioning? Environmental Conservation, 27(1), 1–4.CrossRefGoogle Scholar
- Noss, R. F. (2001). Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15(3), 578–590.CrossRefGoogle Scholar
- Oerlemans, J., Anderson, B., Hubbard, A., Huybrechts, P., Johannesson, T., Krap, W. H., Schmeits, M., Stroeven, A. P., van der Wal, R. S. W., Wallinga, J., & Zuo, Z. (1998). Modeling the response of glaciers to climate warming. Climate Dynamics, 14, 267–274.CrossRefGoogle Scholar
- Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313, 1068–1072.CrossRefGoogle Scholar
- Parma, A. M., et al. (1998). What can adaptive management do for our fish, forests, food, and biodiversity? Integrative Biology, 1(1), 16–26.CrossRefGoogle Scholar
- Pitchford, J. L., Wu, C., Lin, L. S., Petty, J. T., Thomas, R., Veselka, I. V. W. E., Welsch, D., Zegre, N., & Anderson, J. T. (2012). Climate change effects on hydrology and ecology of wetlands in the mid-Atlantic highlands. Wetlands, 32(1), 21–33. https://doi.org/10.1007/s13157-011-02593.CrossRefGoogle Scholar
- Pringle, C. M. (2000). River conservation in tropical versus temperate latitudes. In P. J. Boon, B. R. Davies, & G. E. Petts (Eds.), Global perspectives on river conservation: Science, policy and practice (pp. 371–384). West Sussex: Wiley.Google Scholar
- Poff, N. L., Brinson, M., & Day, J. B. (2002). Freshwater and coastal ecosystems and global climate change: A review of projected impacts for the United States (44 p). Virginia: Pew Center on Global Climate Change.Google Scholar
- Pujolar, J. M., Vincenz, I. S., Zane, L., Jesensek, D., De Leo, G. A., & Crivelli, A. J. (2011). The effect of recurrent floods on genetic composition of marble trout populations. Plos One. https://doi.org/10.1371/journal.pone.0023822. PMid: 21931617.CrossRefGoogle Scholar
- Schindler, D. W. (1968). Feeding, assimilation and respiration rates of Daphnia magna under various environ- mental conditions and their relation to production estimates. Journal of Animal Ecology, 37, 369–385.CrossRefGoogle Scholar
- Schindler, D. W. (1997). Liming to restore acidified lakes and streams: A typical approach to restoring damaged ecosystems? Restoration Ecology, 5, 1–6.CrossRefGoogle Scholar
- Schindler, D. W. (2001). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences, 58(18), 29.Google Scholar
- Schindler, D. W., Beaty, K. G., Fee, E. J., Cruikshank, D. R., DeBruyn, E. R., Findlay, D. L., Linsey, G. A., Shearer, J. A., Stainton, M. P., & Turner, M. A. (1990). Effects of climate warming on lakes of the central boreal forest. Science, 250, 967–970.CrossRefGoogle Scholar
- Seekell, D. A., Carpenter, S. R., Cline, T. J., & Pace, M. L. (2012). Conditional heteroskedasticity forecasts regime shift in a whole ecosystem experiment. Ecosystems, 15, 741–747.CrossRefGoogle Scholar
- Semlitsch, R. D. (2002). Principles for management of aquatic-breeding amphibians. Journal of Wildlife Management, 64, 615–631.CrossRefGoogle Scholar
- Semlitsch, R. D., & Brodie, J. R. (1998). Are small isolated wetlands inexpendable? Conservation Biology, 12, 1129–1133.CrossRefGoogle Scholar
- Shuter, B. J., & Meisner, J. D. (1992). Tools for assessing the impact of climate change on freshwater fish populations. Geo Journal, 28(1), 7–20.Google Scholar
- Solomon, A. M. (1994). Management and planning of terrestrial parks and reserves during climate change. In J. Pernetta, R. Leemans, D. Elder, & S. Humphrey (Eds.), Impacts of climate change on ecosystems and species: Implications for protected areas (pp. 1–12). Gland: The World Conservation Union (IUCN).Google Scholar
- Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., & Osman, R. W. (2002). Linking climate change and biological invasions: Ocean warming facilitates non-indigenous species invasions. Proceedings of the National Academy of Sciences, 99(24), 15497–15500.CrossRefGoogle Scholar
- Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., et al. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
- Tyedmers, P. C., & Ward, B. (2001). A review of the impacts of climate change on BC’s freshwater fish resources and possible management responses. Fisheries Centre Research Reports, 9(7), 1–12.Google Scholar
- Venema, H. D., Schiller, E. J., Adamowski, K., & Thizy, J. M. (1997). A water resources planning response to climate change in the Senegal River basin. Journal of Environmental Management, 49, 125–155.CrossRefGoogle Scholar
- Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lurling, M., & Scheffer, M. (2012). Recovery rates reflect distance to a tipping point in a living system. Nature, 481, 357–359.CrossRefGoogle Scholar
- Welcomme, R. L. (1979). Fisheries ecology of flood plain rivers (317 pp). London: Longman.Google Scholar
- Westmacott, J. R., & Burn, D. H. (1997). Climate change effects on the hydrologic regime within the Churchill-Nelson River Basin. Journal of Hydrology, 202, 263–279.CrossRefGoogle Scholar
- Wilby, R. L., Orr, H., Watts, G., Battarbee, R. W., Berry, P. M., Chadd, R., Dugdale, S. J., Dunbar, M. J., et al. (2010). Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice. Science of the Total Environment, 408, 4150–4164.CrossRefGoogle Scholar
- Zinyowera, M. C., Jallow, B. P., Maya, R. S., Okoth-Ogendo, H. W. O., et al. (1998). Africa. In R. T. Watson, M. C. Zinyowera, R. H. Moss, & D. J. Dokken (Eds.), The regional impacts of climate change; An assessment of vulnerability, A special report of IPCC Working Group II (pp. 30–84). Cambridge: Cambridge University Press.Google Scholar