Advertisement

Impact of Climate Change on Freshwater Ecosystem and Its Sustainable Management

  • Birjees Hassan
  • Humaira Qadri
  • Md. Niamat Ali
  • Nissar Ahmad Khan
  • Ali Mohd Yatoo
Chapter
  • 489 Downloads

Abstract

Freshwater ecosystems are vital for global biodiversity and ecosystem services. Freshwater ecosystems are susceptible to the impacts of environmental change, which may cause irreversible damage to these ecosystems upon which huge amount of biodiversity and ecosystem services are dependent. Within the next few decades the climate change will have considerable ecological impacts on most of the fresh water ecosystems as per the current climatic predictions. Different freshwater ecosystems will be affected differently by climate change. One of the most important and major impact to be caused by climate change will be on fresh water flow regime. The speed of climate change will be abrupt and uneven rather than slow and even. Impacts caused by climate change on freshwater ecosystems will be visible both physically and chemically. It is very hard and more complex to forecast the impact on freshwater recourses due to climate change. In most of the cases, climate change together with other man made pressures will cause much damage to freshwater ecosystems. It is very difficult to predict impact of climate change on freshwater ecosystems in the next few decades using current global climate models. Rather than focusing on impact assessment a risk–based approach should be adopted to assess and respond to climate change. A number of measures are required to protect freshwater ecosystems such as reducing extraction of water from ground and surface water, maintaining water flows, management of macrophytes, artificial oxygenation and mixing, sediment removal etc. so that fresh water ecosystems are not affected largely by small climate induced changes. When a diversity of healthy habitats of freshwater ecosystems can be maintained, the assimilative ability of freshwater ecosystems will be further strengthened. Incorporation of long lasting, observed study data with models and manipulative experiments will assist the progress of mechanistic, and hence predictive, perceptive of responses to future climate change.

Keywords

Freshwater Ecosystem Biodiversity Management Macrophytes 

References

  1. Abell, R., Thieme, M., Dinerstein, E., & Olson, D. (2002). A sourcebook for conducting biological assessments and developing biodiversity visions for eco-region conservation (Volume II: Freshwater eco-regions) (201 pp). Washington, DC: World Wildlife Fund.Google Scholar
  2. Arnell, N., Liu, C., et al. (2001). Chapter 4: Hydrology and water resources. In J. Mc-Carthy, O. Canziana, N. Leary, D. Dokken, & K. White (Eds.), Climate change (2001): Impacts, adaptation, and vulnerability (pp. 191–233). Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  3. Atkinson, D. (1995). Effects of temperature on the size of aquatic ectotherms: Exceptions to the general rule. Journal of Thermal Biology, 20(1/2), 61–74.CrossRefGoogle Scholar
  4. Baron, J. S., Poff, N. L., Angermeier, P. L., Dahm, C. N., Gleick, P. H., Hairston, N. G., Jr., Jackson, R. B., Johnston, C. A., Richter, B. D., & Steinman, A. D. (2003). Sustaining healthy freshwater ecosystems. Issues in Ecology, 10, 1–16.Google Scholar
  5. Beebee, T. J. C. (1995). Amphibian breeding and climate change. Nature, 374, 219–220.CrossRefGoogle Scholar
  6. Belk, D., & Fugate, M. (2000). Two new Branchinecta (Crustacea: Anostraca) from the southwestern United States. The Southwestern Naturalist, 45(2), 111–117.CrossRefGoogle Scholar
  7. Biggs, R., Carpenter, R., & Brock, W. R. (2009). Turning back from the brink: Detecting an impending regime shift in time to avert it. Proceedings of the National Academy of Sciences USA, 106, 826–831.CrossRefGoogle Scholar
  8. Boix-Fayos, C., Calvo-Cases, A., Imeson, A. C., Soriano Soto, M. D., & Tiemessen, I. R. (1998). Spatial and short-term temporal variations in runoff, soil aggregation and other soil properties along a Mediterranean climatological gradient. Catena, 33, 123–138.CrossRefGoogle Scholar
  9. Boon, P. J., & Raven, P. J. (2012). River conservation and management. London: Wiley-Blackwell.CrossRefGoogle Scholar
  10. Butler, R. W., & Vennesland, R. G. (2000). Integrating climate change and predation risk with wading bird conservation research in North America. Waterbirds, 23(3), 535–540.CrossRefGoogle Scholar
  11. Carpenter, S. R., Fisher, S. G., Grimm, N. B., & Kitchell, J. F. (1992). Global change and freshwater ecosystems. Annual Review of Ecology and Systematics, 23, 119–139.CrossRefGoogle Scholar
  12. Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W. A., Cline, A., Coloso, J., & Hodgson, H. R. (2011). Early warnings of regime shifts: A whole-ecosystem experiment. Science, 332, 1079–1082.CrossRefGoogle Scholar
  13. Conover, D. O. (1984). Adaptive significance of temperature-dependent sex determination in a fish. American Naturalist, 123(3), 297–313.CrossRefGoogle Scholar
  14. Covich, A. P., Austen, M. C., Bärlocher, F., Chauvet, E., Cadrinale, B. J., Biles, C. L., Inchausti, P., & Dangels, O. (2004). The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience, 54, 767–775.CrossRefGoogle Scholar
  15. De Groot, R. S., & Ketner, P. (1994). Sensitivity of NW European species and ecosystems to climate change and some implications for nature conservation and management. In J. Pernetta, R. Leemans, D. Elder, & S. Humphrey (Eds.), Impacts of climate change on ecosystems and species: Implications for protected areas (pp. 28–53). Gland: The World Conservation Union (IUCN), Gland.Google Scholar
  16. Dettinger, M. D., & Cayan, D. R. (1995). Large-scale forcing of recent trends toward early snowmelt runoff in California. Journal of Climate, 8, 606–623.CrossRefGoogle Scholar
  17. Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., & Follard, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277, 364–367.CrossRefGoogle Scholar
  18. Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.CrossRefGoogle Scholar
  19. Firth, P., & Fisher, S. G. (1992). Global change and freshwater ecosystems. New York: Springer.CrossRefGoogle Scholar
  20. Gibbs, J. P. (1993). Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands, 13, 25–31.CrossRefGoogle Scholar
  21. Gilbert, O. L., & Anderson, P. (1998). Habitat creation and repair (288 pp). New York: Oxford University Press.Google Scholar
  22. Gillson, L., Dawson, T. P., Jack, S., & McGeoch, M. A. (2013). Accommodating global change contingencies in conservation strategy. Trends in Ecology and Evolution, 28, 135–142.CrossRefGoogle Scholar
  23. Glen, G. (2010). The impact of global change on European lakes. New York: Springer.Google Scholar
  24. Hansen, G., & Cramer, W. (2015). Global distribution of observed climate change impacts. Nature Climate Change, 5, 182–185.CrossRefGoogle Scholar
  25. Henderson, M. A., Levy, D. A., & Stockner, J. S. (1992). Probably consequences of climate change on freshwater production of Adams River sockeye salmon. Geo Journal, 28(1), 51–59.Google Scholar
  26. Herman, T. B., & Scott, F. W. (1994). Protected areas and global climate change: assessing the regional or local vulnerability of vertebrate species. In J. Pernetta, R. Leemans, D. Elder, & S. Humphrey (Eds.), Impacts of climate change on ecosystems and species: Implications for protected Areas (pp. 13–27). Gland: The World Conservation Union (IUCN).Google Scholar
  27. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., & Xiaosu, V. (Eds.) (2001). Climate change: The scientific basis. Intergovernmental Panel on Climate Change: Working Group I. Cambridge: Cambridge University Press. 881 pp.Google Scholar
  28. Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A., & van Nes, E. H. (2013). Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology & Evolution, 28, 149–155.CrossRefGoogle Scholar
  29. Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83–95.CrossRefGoogle Scholar
  30. Junk, W. J. (2002). Long-term environmental trends and the future of tropical wetlands. Environmental Conservation, 29(4), 414–435.CrossRefGoogle Scholar
  31. Kaser, G., Hastenrath, S., & Ames, A. (1996). Mass balance profiles on tropical glaciers. Zeitschrift für Gletscherkundeund Glazialgeologie, 32, 75–81.Google Scholar
  32. Kitchell, J. F. (Ed.). (1992). Food web management: A case study of Lake Mendota (553 pp). New York: Springer.Google Scholar
  33. Lehmkuhl, D. M. (1974). Thermal regime alterations and vital environmental physiological signals in aquatic systems. In J. W. Gibbons & R. R. Sharitz (Eds.), Thermal ecology. Atomic energy commission symposium series, CONF-730505, Augusta, GA, USA (pp. 216–222).Google Scholar
  34. Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin, N. G., Prowse, T. D., Stewart, K. M., & Vuglinski, V. S. (2000). Historical trends in lake and river cover in the Northern Hemisphere. Science, 289, 1743–1746.CrossRefGoogle Scholar
  35. Malcolm, J. R., & Markham, A. (2000). Global warming and terrestrial biodiversity decline. A report prepared for the WWF. http://www.panda.org/downloads/climate_change/speedkills_c6s8.pdf
  36. Matthews, W. J., & Zimmerman, E. G. (1990). Potential effects of global warming on native fishes of the southern Great Plains and the southwest. Fisheries, 15(6), 26–32.CrossRefGoogle Scholar
  37. McCarty, J. P., & Zedler, J. B. (2002). Restoration, ecosystem. In H. A. Mooney & J. G. Canadell (Eds.), The earth system: Biological and ecological dimensions of global environmental change (Vol. 2, pp. 532–539). Chichester: Wiley.Google Scholar
  38. Meehl, G. A., Karl, T., Easterling, D. R., Changnon, S., Pielke, J. R., Changnon, D., Evans, J., Groisman, P. Y., Knutson, T. R., Kunkel, K. E., Mearns, L. O., Parmesan, C., Pulwarty, R., Root, T., Sylves, R. T., Whetton, P., & Zwiers, F. (2000). An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bulletin of the American Meteorological Society, 81(3), 413–416.CrossRefGoogle Scholar
  39. Meerhoff, et al. (2012). Environmental warming in shallow lakes: A review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research, 46, 259–394.CrossRefGoogle Scholar
  40. Michener, W. K., Blood, E. R., Bildstein, K. L., Brinson, M. M., & Gardner, L. R. (1997). Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications, 7, 770–801.CrossRefGoogle Scholar
  41. Moss, B. (2000). Biodiversity in fresh waters—An issue of species preservation or system functioning? Environmental Conservation, 27(1), 1–4.CrossRefGoogle Scholar
  42. Noss, R. F. (2001). Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15(3), 578–590.CrossRefGoogle Scholar
  43. Oerlemans, J., Anderson, B., Hubbard, A., Huybrechts, P., Johannesson, T., Krap, W. H., Schmeits, M., Stroeven, A. P., van der Wal, R. S. W., Wallinga, J., & Zuo, Z. (1998). Modeling the response of glaciers to climate warming. Climate Dynamics, 14, 267–274.CrossRefGoogle Scholar
  44. Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313, 1068–1072.CrossRefGoogle Scholar
  45. Parma, A. M., et al. (1998). What can adaptive management do for our fish, forests, food, and biodiversity? Integrative Biology, 1(1), 16–26.CrossRefGoogle Scholar
  46. Pitchford, J. L., Wu, C., Lin, L. S., Petty, J. T., Thomas, R., Veselka, I. V. W. E., Welsch, D., Zegre, N., & Anderson, J. T. (2012). Climate change effects on hydrology and ecology of wetlands in the mid-Atlantic highlands. Wetlands, 32(1), 21–33.  https://doi.org/10.1007/s13157-011-02593.CrossRefGoogle Scholar
  47. Pringle, C. M. (2000). River conservation in tropical versus temperate latitudes. In P. J. Boon, B. R. Davies, & G. E. Petts (Eds.), Global perspectives on river conservation: Science, policy and practice (pp. 371–384). West Sussex: Wiley.Google Scholar
  48. Poff, N. L., Brinson, M., & Day, J. B. (2002). Freshwater and coastal ecosystems and global climate change: A review of projected impacts for the United States (44 p). Virginia: Pew Center on Global Climate Change.Google Scholar
  49. Pujolar, J. M., Vincenz, I. S., Zane, L., Jesensek, D., De Leo, G. A., & Crivelli, A. J. (2011). The effect of recurrent floods on genetic composition of marble trout populations. Plos One.  https://doi.org/10.1371/journal.pone.0023822. PMid: 21931617.CrossRefGoogle Scholar
  50. Schindler, D. W. (1968). Feeding, assimilation and respiration rates of Daphnia magna under various environ- mental conditions and their relation to production estimates. Journal of Animal Ecology, 37, 369–385.CrossRefGoogle Scholar
  51. Schindler, D. W. (1997). Liming to restore acidified lakes and streams: A typical approach to restoring damaged ecosystems? Restoration Ecology, 5, 1–6.CrossRefGoogle Scholar
  52. Schindler, D. W. (2001). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences, 58(18), 29.Google Scholar
  53. Schindler, D. W., Beaty, K. G., Fee, E. J., Cruikshank, D. R., DeBruyn, E. R., Findlay, D. L., Linsey, G. A., Shearer, J. A., Stainton, M. P., & Turner, M. A. (1990). Effects of climate warming on lakes of the central boreal forest. Science, 250, 967–970.CrossRefGoogle Scholar
  54. Seekell, D. A., Carpenter, S. R., Cline, T. J., & Pace, M. L. (2012). Conditional heteroskedasticity forecasts regime shift in a whole ecosystem experiment. Ecosystems, 15, 741–747.CrossRefGoogle Scholar
  55. Semlitsch, R. D. (2002). Principles for management of aquatic-breeding amphibians. Journal of Wildlife Management, 64, 615–631.CrossRefGoogle Scholar
  56. Semlitsch, R. D., & Brodie, J. R. (1998). Are small isolated wetlands inexpendable? Conservation Biology, 12, 1129–1133.CrossRefGoogle Scholar
  57. Shuter, B. J., & Meisner, J. D. (1992). Tools for assessing the impact of climate change on freshwater fish populations. Geo Journal, 28(1), 7–20.Google Scholar
  58. Solomon, A. M. (1994). Management and planning of terrestrial parks and reserves during climate change. In J. Pernetta, R. Leemans, D. Elder, & S. Humphrey (Eds.), Impacts of climate change on ecosystems and species: Implications for protected areas (pp. 1–12). Gland: The World Conservation Union (IUCN).Google Scholar
  59. Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., & Osman, R. W. (2002). Linking climate change and biological invasions: Ocean warming facilitates non-indigenous species invasions. Proceedings of the National Academy of Sciences, 99(24), 15497–15500.CrossRefGoogle Scholar
  60. Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., et al. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  61. Tyedmers, P. C., & Ward, B. (2001). A review of the impacts of climate change on BC’s freshwater fish resources and possible management responses. Fisheries Centre Research Reports, 9(7), 1–12.Google Scholar
  62. Venema, H. D., Schiller, E. J., Adamowski, K., & Thizy, J. M. (1997). A water resources planning response to climate change in the Senegal River basin. Journal of Environmental Management, 49, 125–155.CrossRefGoogle Scholar
  63. Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lurling, M., & Scheffer, M. (2012). Recovery rates reflect distance to a tipping point in a living system. Nature, 481, 357–359.CrossRefGoogle Scholar
  64. Welcomme, R. L. (1979). Fisheries ecology of flood plain rivers (317 pp). London: Longman.Google Scholar
  65. Westmacott, J. R., & Burn, D. H. (1997). Climate change effects on the hydrologic regime within the Churchill-Nelson River Basin. Journal of Hydrology, 202, 263–279.CrossRefGoogle Scholar
  66. Wilby, R. L., Orr, H., Watts, G., Battarbee, R. W., Berry, P. M., Chadd, R., Dugdale, S. J., Dunbar, M. J., et al. (2010). Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice. Science of the Total Environment, 408, 4150–4164.CrossRefGoogle Scholar
  67. Zinyowera, M. C., Jallow, B. P., Maya, R. S., Okoth-Ogendo, H. W. O., et al. (1998). Africa. In R. T. Watson, M. C. Zinyowera, R. H. Moss, & D. J. Dokken (Eds.), The regional impacts of climate change; An assessment of vulnerability, A special report of IPCC Working Group II (pp. 30–84). Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Birjees Hassan
    • 1
  • Humaira Qadri
    • 2
  • Md. Niamat Ali
    • 1
    • 3
  • Nissar Ahmad Khan
    • 4
  • Ali Mohd Yatoo
    • 1
  1. 1.Department of Environmental ScienceUniversity of KashmirSrinagarIndia
  2. 2.Department of Environmental Sciences, School of SciencesSri Pratap College Campus, Cluster University of SrinagarSrinagarIndia
  3. 3.Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for DevelopmentUniversity of KashmirSrinagarIndia
  4. 4.Department of BotanyPunjabi UniversityPatialaIndia

Personalised recommendations