Heavy Metal Intrusion and Accumulation in Aquatic Ecosystems
- 360 Downloads
Abstract
Most of the heavy metals have deleterious impacts on the growth and productivity of the plants, and also alters the general physiological characteristics of plants. But, some plants cope with the pollution stress and accumulate more and more toxic and heavy metals in their modified tissues. These toxic substances not only affect the plant physiology, but have toxic impacts on soil health. The toxic metals, in context to many organic compounds are not decomposed by the microbiological activity. Toxic levels of Lead (Pb), Cadmium (Cd) and Mercury (Hg) affects plant processes at physiological and biochemical levels some of the heavy metals are accumulated in aquatic environment and most of them get absorbed in the aquatic plants. Theretofore, a miscellaneous positive correlation among selected aquatic plants and specific heavy metals was reported, however mechanism of a particular model species is still vague. The intrusion of heavy metals may also change the nutrient pool of the aquatic ecosystem that may affect the overall productivity of the system. The work will review some of the important heavy metals, the plants that are useful to reduce the concentration of these metals from different ecosystems.
Keywords
Heavy metals Phytoremediation Tolerance Growth Productivity ToxicityReferences
- Abhilash, P. C., Pandey, V. C., Srivastava, P., Rakesh, P. S., Chandran, S., Singh, N., & Thomas, A. P. (2009). Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. Journal of Hazardous Materials, 170, 791–797.CrossRefGoogle Scholar
- Ahmadpour, P., Ahmadpour, F., Mahmud, T. M. M., Abdu, A., Soleimani, M., & Tayefeh, F. H. (2012). Phytoremediation of heavy metals: A green technology. African Journal of Biotechnology, 11, 14036–14043.Google Scholar
- Aisien, F. A., Faleye, O., & Aisien, E. T. (2010). Phytoremediation of heavy metals in aqueous solutions. Leonardo Journal of Sciences, 17, 37–46.Google Scholar
- Akhter, M. S., & Madany, I. M. (1993). Heavy metals in street and house dust in Bahrain. Water, Air and Soil Pollution, 66, 111–119.CrossRefGoogle Scholar
- Barcelo, J., & Poschenrieder, C. H. (1992). Respuestas de las plantas ala contaminacion por metales pesados. In SEFV (Ed.), Proceeding of the IV Simposium Nacional sobre Nutricion Mineral de las plantas, Alicante, Spain (pp. 45–61).Google Scholar
- Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17, 21–34.CrossRefGoogle Scholar
- Bhadra, R., Wayment, D. G., Hughes, J. B., & Shanks, J. V. (1999). Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environmental Science & Technology, 33, 446–452.CrossRefGoogle Scholar
- Bharti, N., & Singh, R. P. (1993). Growth and nitrate reduction by Sesamum indicum cv PB-I respond differentially to lead. Phytochemistry, 33, 531–534.CrossRefGoogle Scholar
- Bhat, R. A., Shafiq-ur-Rehman, Dervash, M. A., Mushtaq, N., Bhat, J. I. A., & Dar, G. H. (2017). Current status of nutrient load in Dal Lake of Kashmir Himalaya. Journal of Pharmacognosy and Phytochemistry, 6, 165–169.Google Scholar
- Boonyapookana, B., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P., & Singhakaew, S. (2002). Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globose. International Journal of Phytoremediation, 4, 87–100.CrossRefGoogle Scholar
- Brix, H. (1993). Wastewater treatment in constructed wetlands. System design, removal processes, and treatment performance. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 9–22). Boca Raton/Ann Arbor/London/Tokyo: Lewis.Google Scholar
- Broyer, T. C., Johnson, C. M., & Paull, R. E. (1972). Some aspects of lead in plant nutrition. Plant and Soil, 2, 301–313.CrossRefGoogle Scholar
- Burken, J. G., & Schnoor, J. L. (1997). Uptake and metabolism of atrazine by poplar trees. Environmental Science & Technology, 31, 1399–1406.CrossRefGoogle Scholar
- Cannon, H. L., & Bowlers, J. M. (1962). Contamination of vegetation by tetraethyl lead. Science, 137, 765–766.CrossRefGoogle Scholar
- Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663.CrossRefGoogle Scholar
- Casagrande, G. C. R., Reis, C., Arruda, R., deAndrade, R. L. T., & Battirola, L. D. (2018). Bioaccumulation and biosorption of mercury by Salvinia biloba Raddi (Salviniaceae). Water Air Soil Pollution, 229, 166.CrossRefGoogle Scholar
- Cataldo, D. A., Garland, T. R., & Wildung, R. E. (1981). Cadmium distribution and chemical fate in soybean plants. Plant Physiology, 68, 835–839.CrossRefGoogle Scholar
- Cayuela, E. A., Munoz-Mayor, F., Vicente-Agullo, E., Moyano, J. O., Garcia-Abellan, M. T., Estan, M. C., & Bolarin. (2007). Drought pretreatment increases the salinity resistance of tomato plants. Journal of Plant Nutrition and Soil Science, 170, 479–484.CrossRefGoogle Scholar
- Chandra, P., Tripathi, R. D., Rai, U. N., Sinha, S., & Garg, P. (1993). Biomonitoring and amelioration of non-point source pollution on some aquatic bodies. Water Science and Technology, 38, 323–326.CrossRefGoogle Scholar
- Chaney, R. L., Angle, J. S., McIntosh, M. S., Reeves, R. D., Li, Y. M., Brewer, E. P., Chen, K. Y., Roseberg, R. J., Perner, H., Synkowski, E. C., Broadhurst, C. L., Wang, S., & Baker, A. J. (2005). Using hyperaccumulator plants to phytoextract soil Ni and Cd. Zeitschrift für Naturforschung, 60, 190–198.Google Scholar
- Chattopadhyay, S., Fimmen, R. L., Yates, B. J., Lal, V., & Randall, P. (2012). Phytoremediation of mercury and methyl mercury-contaminated sediments by water hyacinth (Eichhornia Crassipes). International Journal of Phytoremediation, 14, 142–161.CrossRefGoogle Scholar
- Cho, U. H., & Seo, N. H. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168, 113–120.CrossRefGoogle Scholar
- Chong, Y., Hu, H., & Qian, Y. (2003). Effects of inorganic nitrogen compounds and pH on the growth of duckweed. Journal of Environmental Sciences, 24, 35–40.Google Scholar
- Chow, T. J. (1970). Lead accumulation in road side soil and grass. Nature, 225, 295–296.CrossRefGoogle Scholar
- Chukwuma, S. C. (1993). Comparison of the accumulation of Cd, Pb and Zn in cultivated and wild plant species in the derelict Enyigba lead-zinc mine. Environmental Toxicology and Chemistry, 38, 167–173.CrossRefGoogle Scholar
- Clark, R. E. (1993). IARC monographs on the evaluation of carcinogenic risks to humans: Chromium, nickel and welding. Quarterly Review of Biology, 68, 472–473.CrossRefGoogle Scholar
- Coquery, M., & Welbourn, P. M. (1944). Mercury uptake from contaminated water and sediment by the rooted and submerged aquatic macrophyte Eriocaulon septangulare. Archives of Environmental Contamination and Toxicology, 26, 335–341.Google Scholar
- Cutler, J. M., & Rains, D. W. (1974). Characterization of cadmium uptake by plant tissue. Plant Physiology, 54, 67–71.CrossRefGoogle Scholar
- Dabas, S. (1992). Ph.D. Thesis, Department of Biosciences, M. D. India.Google Scholar
- David, T. W., Myint, T. M., & Sein, T. (2003). Lead removal from industrial waters by water hyacinth. AU Journal of Technology, 6, 187–192.Google Scholar
- Davis, L. C., Erickson, L. E., Narayanan, N., & Zhang, Q. (2003). Modeling and design of phytoremediation. In Phytoremediation: Transformation and control of contaminants (pp. 663–694). New York: Wiley.Google Scholar
- De, A. K., Sen, A. K., Modak, D. P., & Jana, S. (1984). Studies of toxic effects of Hg(II) on Pistia stratiotes. Water Air Soil Pollution, 24, 351.Google Scholar
- Dulay, J. A. L., Caldona, E. B., & Camacho, A. R. (2010). Phytoremediation of Cadmium contaminated water by Hydrilla (Hydrilla verticillate). SLU Research Journal, 41, 23–33.Google Scholar
- Falchuk, K. H., Fawcett, D. W., & Vallee, B. L. (1975). Competitive antagonism of cadmium and zinc in the morphology and cell division of Euglena gracilis. Journal of Submicroscopic Cytology, 7, 139–152.Google Scholar
- Forstner, U., & Wittman, G. T. (1979). Metal pollution in aquatic environment. Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
- Francis, C. W., & Rush, S. G. (1974). Factors affecting uptake and distribution of cadmium in plants. In D. D. Hemphill (Ed.), Trace substances in environmental health (Vol. 7, pp. 75–81). Jefferson City: Hemphill Columbia University.Google Scholar
- Fritioff, A., & Greger, M. (2006). Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220–227.CrossRefGoogle Scholar
- Gallardo, T., Benson, M., Robert, F., Martin, F., & Dean. (1999). Lead accumulation by three aquatic plants. Symposia papers presented before the division of Environmental Chemistry. American Chemical Society, 39, 46–47.Google Scholar
- Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.Google Scholar
- Goldsmith, C. D. J., Scanion, P. F., & Pirie, W. R. (1976). Lead concentrations in soil and vegetation associated with highways of different traffic densities. Bulletin of Environmental Contamination and Toxicology, 16, 66–70.CrossRefGoogle Scholar
- Gomes, M. V. T., de Souza, R. R., Teles, V. S., & Mendes, E. A. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chromrosphere, 103, 228–233.CrossRefGoogle Scholar
- Gonzalez, H., Lodenius, M., & Martinez, L. (1994). Removal of mercury from polluted waters by the water hyacinth (Eichhornia crassipes). Chemistry and Ecology, 9, 7–12.CrossRefGoogle Scholar
- Gratao, P. L., Monteiro, C. C., Antunes, A. M., Peres, L. E. P., & Azevedo, R. A. (2008). Acquired tolerance of tomato (Lycopersicon escultntum cv. micro tom) plants to cadmium- induced stress. Annals of Applied Biology, 153, 321–333.CrossRefGoogle Scholar
- Guilizzoni, P. (1991). The role of heavy metals and toxic materials in the physiological ecology of submerged Macrophytes. Aquatic Botany, 41, 87–109.CrossRefGoogle Scholar
- Gupta, M., & Chandra, P. (1998). Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environmental Pollution, 103, 327–332.CrossRefGoogle Scholar
- Haghiri, F. (1974). Plant uptake of cadmium as influenced by cation exchanges capacity, organic matter, zinc and soil temperature. Journal of Environmental Quality, 3, 180–183.CrossRefGoogle Scholar
- Heaton, A. C. P., Rugh, C. L., Kim, T., Wang, N. J., & Meagher, R. B. (2003). Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environmental Toxicology and Chemistry, 12, 2940–2947.CrossRefGoogle Scholar
- Hemphill, D. D. (1972). Availability of trace elements to plants with respect to soil-plant interaction. Annals of the New York Academy of Sciences, 199, 46–61.CrossRefGoogle Scholar
- Herrero, R., Lodeiro, P., Rojo, R., Ciorba, A., Rodriguez, P., & Sastre de Vicente, M. E. (2008). The efficiency of the red alga Mastocarpus stellatus for remediation of cadmium pollution. Bioresource Technology, 99, 4138–4146.CrossRefGoogle Scholar
- Hinesly, T. D., Redberg, K. E., Pietz, R. I., & Ziegler, E. L. (1984). Cadmium and zinc uptake by corn (Zea mays L.) with repeated applications of sewage sludge. Journal of Agricultural and Food Chemistry, 32, 155–163.CrossRefGoogle Scholar
- Hsu, Y. T., & Kao, C. H. (2007). Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant and Soil, 298, 231–241.CrossRefGoogle Scholar
- Huang, X. D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental Pollution, 130, 465–476.CrossRefGoogle Scholar
- Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.CrossRefGoogle Scholar
- Hussanin, E., Labib, A. S., & Dobal, A. T. (1993). Potential Pb, Cd, Zn and B contamination of sandy soils after different irrigation periods with sewage effluent. Water, Air and Soil Pollution, 66, 239–249.Google Scholar
- Jadia, D. C., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8, 921–928.Google Scholar
- Jana, S. (1988). Accumulation of Hg and Cr by three aquatic species and subsequent changes in several physiological and biochemical plant parameters. Water, Air, and Soil Pollution, 38, 105–109.Google Scholar
- Jarvis, S. C., Jones, L. H. P., & Hopper, M. J. (1976). Cadmium uptake from solution by plants and its transport from roots to shoots. Plant and Soil, 44, 179–191.CrossRefGoogle Scholar
- John, M. K. (1976). Interrelationships between plant cadmium and uptake of some other elements from culture solutions by oats and lettuce. Environmental Pollution, 11, 85–95.CrossRefGoogle Scholar
- John, M. K., & Laerhoven, V. C. (1976). Revegetation of Metalliferous mine spoil contaminated by Pb & Zn. Environmental Pollution, 100, 163–173.CrossRefGoogle Scholar
- Kabata-Pendias, A. (2011). Trace elements in soils and plant. Boca Raton: CRC Press.Google Scholar
- Kamran, M. A., Mufti, R., Mubariz, N., Syed, J. H., Bano, A., et al. (2014). The potential of the flora from different regions of Pakistan in phytoremediation: A review. Environmental Science and Pollution Research, 21, 801–812.CrossRefGoogle Scholar
- Kashem, M. A., Singh, B. R., Imamul Huq, S. M., & Kawa, S. (2008). Cadmium phytoextraction efficiency of arum (Colocasia antiquorum), radish (Raphanus sativus L.) and water spinach (Ipomoea aquatica) grown in hydroponics. Water, Air, & Soil Pollution, 192, 273.CrossRefGoogle Scholar
- Kinnersely, A. M. (1993). The role of phytochelatins in plant growth and productivity. Plant Growth Regulation, 12, 207–217.CrossRefGoogle Scholar
- Kuhad, M. S., & Malik, R. S. (1989). Department of soil science. Hissar: C.S.A. University.Google Scholar
- Kumar, G., Singh, R. P., & Sushila. (1993). Nitrate assimilation and biomass production in Sesamum indicum L. seedlings in a lead enriched environment. Water, Air and Soil Pollution, 66, 163–171.CrossRefGoogle Scholar
- Lagerwerff, J. V. (1971). Uptake of cadmium, lead and zinc by radish from soil and air. Soil Science, 111, 129–133.CrossRefGoogle Scholar
- Lagerwerff, J. V., & Armiger, W. H. (1973). Uptake of lead by alfalfa and corn from soil and air. Soil Science, 115, 455–460.CrossRefGoogle Scholar
- Lange, V. R., & Wagner, G. J. (1990). Sub cellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiology, 92, 1086–1093.CrossRefGoogle Scholar
- Lenka, M., Panda, K. K., & Panda, B. B. (1990). Studies on the ability of water hyacinth (Eichhornia crassipes) to bioconcentrate and biomonitor aquatic mercury. Environmental Pollution, 66, 89–99.CrossRefGoogle Scholar
- Liao, S., & Chang, W. (2004). Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Journal of Aquatic Plant Management, 42, 60–68.Google Scholar
- Lu, X., Kruatrachue, M., Pokethitiyook, P., & Homyok, K. (2004). Removal of Cadmium and Zinc by Water Hyacinth, Eichhornia crassipes. Science Asia, 30, 93–103.CrossRefGoogle Scholar
- Maine, M. A., Duarte, M. V., & Sune, N. L. (2001). Cadmium uptake by floating macrophytes. Water Research, 35, 2629–2634.CrossRefGoogle Scholar
- Marrugo-Negrete, J., Enamorado-Montes, G., Durango-Hernandez, J., Pinedo-Hernandez, J., & Díez, S. (2017). Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere, 167, 188–192.CrossRefGoogle Scholar
- Martin, G. C., & Hammand, P. B. (1966). Lead uptake by bromegrass from contaminated soil. Agronomy Journal, 58, 553–554.CrossRefGoogle Scholar
- Maury, R., Boudou, A., Ribeyre, F., & Engrand, P. (1988). Experimental study of mercury transfer between artificially contaminated sediment (CH3HgC1) and macrophytes (Elodea densa). Aquatic Toxicology, 12, 213–228.CrossRefGoogle Scholar
- McKenna, I. M., Chaney, R. L., & Williams, F. M. (1993). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environmental Pollution, 79, 113–120.CrossRefGoogle Scholar
- Mehmood, M. A., Qadri, H., Bhat, R. A., Rashid, A., Ganie, S. A., Dar, G. H., & Shafiq-ur-Rehman. (2019). Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environmental Monitoring and Assessment, 191, 104.CrossRefGoogle Scholar
- Miller, J. E., Hassat, J. J., & Koeppe, D. E. (1975). The effect of soil properties and extractable lead levels on lead uptake by soybean. Communications in Soil Science and Plant Analysis, 6, 339–347.CrossRefGoogle Scholar
- Miller, J. E., Hasset, J. J., & Koeppe, D. E. (1977). Uptake of cadmium by soybeans as influenced by soil cation exchange capacity, pH and available phosphorus. Journal of Environmental Quality, 5, 157–160.CrossRefGoogle Scholar
- Miragaya, G. J., & Page, A. L. (1976). Influence of ionic strength and inorganic complex formation on the sorption of traces amounts of Cd by montmorillonite. Soil Science Society America Journal, 40, 658–663.CrossRefGoogle Scholar
- Miretzky, P., Jardim, M. C. B. M. F., & Rocha, J. C. (2005). Factors affecting Hg(II) adsorption in soils from the Rio Negro Basin (Amazon). Quimica Nova, 28, 438–443.CrossRefGoogle Scholar
- Molisani, M. M., Rocha, R., Machadoachado, W., Barreto, R. C., & Lacerda, L. D. (2006). Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba Do Sul: Guandú River System, Se Brazil. Brazilian Journal of Biology, 66, 101–107.CrossRefGoogle Scholar
- Moral, R., Palacios, G., Gomez, I., Navarro, P. J., & Mataix, J. (1994). Distribution and accumulation of heavy metals (Cd, Ni and Cr) in tomato plant. Fresenius Environmental Bulletin, 3, 395–399.Google Scholar
- Motto, H. L., Daines, R. H., Chilko, D. M., & Motto, C. K. (1970). Lead in soil and plants; its relationship to traffic volume and proximity to highways. Environmental Science Technology, 4, 231–237.CrossRefGoogle Scholar
- Muramoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bulletin Environmental Contamination and Toxicology, 30, 170–177.CrossRefGoogle Scholar
- Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Option in Biotechnology, 15, 225–230.CrossRefGoogle Scholar
- Noraho, N., & Gaur, J. R. (1996). Cadmium adsorption and intracellular uptake by two macrophytes, Azolla pinnata and Spirodela polyrhiza. Fundamental and Applied Limnology, 136, 135–144.Google Scholar
- Nriagu, J. O. (1990). Global metal pollution. Environment, 32, 7–33.Google Scholar
- Odum, W. E., & Drifmeyer, J. E. (1978). Sorption of pollutants by plant detritus. A review. Environmental Health Perspective, 27, 133–142.CrossRefGoogle Scholar
- Olguın, E. J., Hernandez, E., & Ramos, I. (2002). The effect of both different light conditions and the pH value on the capacity of Salvinia minima baker for removing cadmium, lead and chromium. Acta Biotechnologica, 22, 121–131.CrossRefGoogle Scholar
- Page, A. L., & Ganje, T. J. (1970). Accumulation of lead in soils for regions of high & low motor vehicles traffic density. Environmental Science Technology, 4, 140–142.CrossRefGoogle Scholar
- Pahlsson, A. B. (1989). Toxicity of heavy metal (Zn, Cu, Cd, Pb) to vascular plant. Water, Air and Soil Pollution, 47, 287–319.CrossRefGoogle Scholar
- Patel, M., Wallace, A., & Romney, H. M. (1977). Effect of chelating agents on phytotoxicity of lead and lead transport. Communications in Soil Science and Plant Analysis, 8, 733–740.CrossRefGoogle Scholar
- Pratas, J., Favas, P. J. C., Paulo, C., Rodrigues, N., & Prasad, M. N. V. (2012). Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. International Journal of Phytoremediation, 14, 221–234.CrossRefGoogle Scholar
- Quzounidou, G., Moustakes, M., & Eleftherious, E. P. (1997). Physiological and ultrastructural effect of cadmium on wheat. Archives of Environmental Contamination and Toxicology, 32, 154–160.CrossRefGoogle Scholar
- Rai, P. K. (2009). Heavy metal phytoremediation from aquatic ecosystems with special reference tomacrophytes. Critical Reviews in Environmental Science and Technology, 39, 697–753.CrossRefGoogle Scholar
- Rai, P. K., & Tripathi, B. D. (2009). Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment, 148, 75–84.CrossRefGoogle Scholar
- Rascio, N., Vecchia, N., Ferretti, F. D., Merio, M. L., & Ghisi, R. (1993). Some effect of cadmium on maize plants. Archives of Environmental Contamination and Toxicology, 25, 244–249.CrossRefGoogle Scholar
- Rashid, A., Bhat, R. A., Qadri, H., & Mehmood, M. A. (2019). Environmental and socioeconomic factors induced blood lead in children: An investigation from Kashmir, India. Environmental Monitoring and Assessment, 191(2), 76.CrossRefGoogle Scholar
- Rauser, W. E. (1986). The amount of cadmium associated with Cd-binding proteins in roots of Agrostis gigantea maize and tomato. Plant Science, 43, 85–91.CrossRefGoogle Scholar
- Rolfe, G. L., & Reinbold, K. A. (1977). Environmental contamination by lead and other heavy metals (p. 143). Urbana: Institute for Environmental Studies.Google Scholar
- Romanova, T. E., & Shuvaeva, O. V. (2016). Fractionation of mercury in water hyacinth and pondweed from contaminated area of gold mine tailing. Water Air Soil Pollution, 227, 171.CrossRefGoogle Scholar
- Romero-Peurtas, M. C., Rodriguez-Serrano, M., Corpas, F. J., Gomez, M., Del-Rio, L. A., & Sandalio, L. M. (2004). Cadmium induced sub cellular accumulation of O2- and H2O2 in pea leaves. Plant Cell and Environment, 27, 1122–1134.CrossRefGoogle Scholar
- Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Peurtas, M. C., & del-Rio, L. A. (2001). Cadmium induces changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115–2126.CrossRefGoogle Scholar
- Sarma, H. (2011). Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4, 118–138.CrossRefGoogle Scholar
- Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a non tolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101, 477–482.CrossRefGoogle Scholar
- Schierup, H., & Larsen, V. J. (1981). Macrophyte cycling of Zn, Cu, Pb and Cd in the littoral zone of a polluted and a non-polluted lake. I. Availability, uptake and translocation of heavy metals in Phragmites australis (Cav.). Trin. Aquatic Botany, 11, 179–210.CrossRefGoogle Scholar
- Schuck, E. A., & Locke, J. K. (1970). Relationship of automotive lead particulates to certain consumer crops. Environmental Science & Technology, 4, 324–330.CrossRefGoogle Scholar
- Sharpe, V., & Denny, P. (1976). Electron microscope studies on the absorption and localization of lead in the leaf tissue of Potamogeton pectinatus. Journal of Experimental Botany, 27, 1155–1162.CrossRefGoogle Scholar
- Singh, R. P., Maheshwari, R., & Sinha, S. K. (1994). Recovery of lead caused decreased in biomass accumulation of mung bean (Vigna radiata L.) seedlings of K2HPO4 and Cacl2. Indian Journal of Experimental Biology, 32, 507–510.Google Scholar
- Singh, R. P., Tripathi, R. D., Sinha, S. K., Maheshwari, R., & Srivastava, H. S. (1997). Response of higher plants to lead contaminated environment. Chemosphere, 34, 2467–2493.CrossRefGoogle Scholar
- Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A., & Ganei, S. A. (2018). Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environmental Monitoring and Assessment, 190(6), 353.CrossRefGoogle Scholar
- Sitarska, M., Traczewska, T., & Filyarovskaya, V. (2015). Removal of mercury (II) from the aquatic environment by phytoremediation. Desalination and Water Treatment, 57, 1–10.Google Scholar
- Skinner, K., Wright, N., & Porter-Goff, E. (2007). Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution, 145, 234–237.CrossRefGoogle Scholar
- Smith, W. H. (1971). Lead contamination of road sides white pines. Forest Science, 17, 192–198.Google Scholar
- Soltan, M. E., & Rashed, M. N. (2003). Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research, 7, 321–334.CrossRefGoogle Scholar
- Srikanth, R., Rao, A. M., Kumar, C. S., & Khanum, A. (1973). Lead, cadmium, nickel, and zinc contamination of ground water around Hussain Sagar lake, Hyderabad, India. Bulletin Environmental Contamination and Toxicology, 50, 138–143.Google Scholar
- Street, J. J., Lindsay, W. L., & Sabey, B. R. (1977). Solubility and plant uptake of cadmium in soils mended with cadmium and sewage sludge. Journal of Environmental Quality, 6, 72–77.CrossRefGoogle Scholar
- Sun, H., Wang, Z., Gao, P., & Liu, P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, 35, 355–364.CrossRefGoogle Scholar
- Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.CrossRefGoogle Scholar
- Sutcliffe, J. F. (1962). Mineral salts absorption in plants. London: Pergamon Press.Google Scholar
- Tandon, T. W., & Crowdy, S. H. (1971). The distribution of lead chelate in the transpiration stream of higher plants. Pest Science, 2, 211–213.CrossRefGoogle Scholar
- Thapa, D., Srivastava, H. S., & Ormrod, D. P. (1988). Physiological and biochemical effect of lead on higher plants. Vegetas, 1, 107–109.Google Scholar
- Tiwari, S., Dixit, S., & Verma, N. (2007). An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environmental Monitoring and Assessment, 129, 253–256.CrossRefGoogle Scholar
- Toppi, S. D. L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.CrossRefGoogle Scholar
- Uqab, B., Mudasir, S., Sheikh, A. Q., & Nazir, R. (2016). Bioremediation: A management tool. Journal of Bioremediation & Biodegradation, 7, 331.Google Scholar
- Uysal, Y., & Taner, F. (2009). Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. International Journal of Phytoremediation, 11, 591–608.CrossRefGoogle Scholar
- Valderrama, A., Tapia, J., Peñailillo, P., & Carvajal, D. E. (2013). Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water and Environment Journal, 27, 293–300.Google Scholar
- Wagner, R. C. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 173–212.CrossRefGoogle Scholar
- Wahbeh, M. I. (1984). Levels of Zn, Mn, Mg, Fe and Cd in three species of seagrass from Aqaba (Jordan). Aquatic Botany, 20, 179–183.CrossRefGoogle Scholar
- Wallace, A., Muller, R. T., Cha, J. W., & Alexander, G. V. (1974). Soil pH, excess lime and chelating agent on micronutrients in soybeans and bush beans. Agronomic Journal, 66, 698–700.CrossRefGoogle Scholar
- Wallace, A., Soufi, S. M., Alexander, C. V., & Cha, J. W. (1976). Comparison of the effect of high levels of DTPA and EDDHA on microelement uptake in bush bean. Communication in Soil Plant Analysis, 7, 111–116.CrossRefGoogle Scholar
- Wang, K. S., Huang, L. C., Lee, H. S., Chen, P. Y., & Chang, S. H. (2008). Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: Effects of cadmium speciation. Chemosphere, 72, 666–672.CrossRefGoogle Scholar
- Welsh, R. P. H., & Denny, P. (1980). The uptake of lead and copper by submerged aquatic macrophytes in two English Lakes. Journal of Ecology, 68, 443–455.CrossRefGoogle Scholar
- Wheeler, G. L., & Rolfe, G. L. (1979). The relationship between daily traffic volume and the distribution of lead in roadside soil and vegetation. Environmental Pollution, 18, 265–274.CrossRefGoogle Scholar
- Wolverton, B. C. (1988). Aquatic plant/microbial filters for treating septic tank effluent. International Conference on Constructed Wetlands for Wastewater Treatment Chattanooga, TN.Google Scholar
- Zhu, Y. L., Zayed, A. M., Qian, J. H., De Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. Journal of Environmental Quality, 28, 39–344.Google Scholar
- Zimdahl, R. L., & Faster, J. M. (1976). The influence of applied phosphorus, manure or lime or uptake of lead from soil. Journal of Environmental Quality, 5, 31–34.CrossRefGoogle Scholar
- Zimdahl, R. L., & Koeppe, D. E. (1977). Uptake by plants. In W. R. Boggerss & B. B. Wixon (Eds.), Lead in the environment (pp. 99–104). Washington, DC: National Science Foundation.Google Scholar