Urban Pond Ecosystems: Preservation and Management Through Phytoremediation

  • Mohd. Muzamil Bhat
  • R. N. Shukla
  • M. Yunus


Life is impossible without freshwater as it is significantly important for all living creatures on earth. The natural built-up of nutrients in freshwater bodies is an extremely time-consuming process but human interferences have enhanced the rate of contaminating the pond and lake ecosystems with N and P plenty of times than natural cause. Large quantities of untreated effluents from industrial and domestic sector are directly discharged into adjacent recipient freshwater environs (ponds and lakes), which manifolds the concentration of concerned nutrients into these freshwater ecosystems. There is no limit pertaining to the treatment techniques availability, but they are either insufficient or least effective for removing the nuisance contaminates from the wastewaters. Besides, these techniques have plenty of environment related issues, in other words conventional remediation techniques pose threats to the freshwater environs and required high energy and cost for establishment. Employing naturally growing plants in disturbed aquatic environs has been observed a viable technique to clean up the nuisance nutrients and toxic pollutants. Phytoremediants scavenge the harmful substances (nutrients and heavy metals) from disturbed surface waters have recently been explored as substitute to conventional methods.


Water bodies Phytoremediation Restoration Contamination Ludwigia repens Eichhornia crassipes 


  1. Abbasi, S. A., & Nipaney, P. C. (1984). The catalytic effect of copper (II), zinc (II) and nickel (II) on the anaerobic digestion of Salvinia molesta (Mitchell). In F. A. Curtis (Ed.), Energy development: New forms, renewable, conservation (pp. 237–247). Pergamon: Oxford.CrossRefGoogle Scholar
  2. Abbasi, S. A., & Nipaney, P. C. (1985). Waste water treatment using aquatic plants. Survivability and growth of Salvinia molesta (Mitchell) over water treated with zinc II and subsequent utilization of the harvested weed for energy (biogas) production. Resource Conservation, 12, 47–55.CrossRefGoogle Scholar
  3. Abhilash, P. C., Pandey, V. C., Srivastava, P., Rakesh, P. S., Chandran, S., Singh, N., & Thomas, A. P. (2009). Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenaugrown in free-floating culture system. Journal of Hazardous Materials, 170(2–3), 791–797.CrossRefGoogle Scholar
  4. Abhilash, P. C., Powell, J. R., Singh, H. B., & Singh, B. K. (2012). Plant-microbe interactions: Novelapplications for exploitation inmultipurpose remediation technologies. Trends in Biotechnology, 30, 416–420.CrossRefGoogle Scholar
  5. Al-Badaii, F., Othman, M. S., & Gasim, M. B. (2013). Water quality assessment of the Semenyih River, Selangor, Malaysia. Journal of Chemistry, 2013, 1–10. Article ID 871056. Scholar
  6. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91, 869–881.CrossRefGoogle Scholar
  7. American Society of Civil Engineers (ASCE), Environmental Protection Agency (EPA). (2002). Urban stormwater BMP performance monitoring. A guidance manual for meeting the national stormwater BMP database requirements (pp. 395–400). Washington DC.Google Scholar
  8. Anon. (1981). Characterisation of pollution in urban stormwater runoff (Technical Paper No. 60, p. 8). Canberra: Australian Water Resources Council and Department of National Development and Energy.Google Scholar
  9. Arber, A. (1920). A study of aquatic angiosperms (p. 436). Cambridge: Cambridge University Press.Google Scholar
  10. Asada, M., & Ohgaki, S. (1996). Benzo(a) pyrene in urban runoff at the beginning of rainfall. Journal of Japan Society on Water Environment, 19, 904–909.CrossRefGoogle Scholar
  11. Asefi, M., & Zamani-Ahamadmahmoodi, R. (2015). Mercury concentrationsand health risk assessment for two fish species, Barbus grypus and Barbus luteus from the maroon river,Khuzestan province, Iran. Environmental Monitoring and Assessment, 187, 653.CrossRefGoogle Scholar
  12. Ashley, R. M., Wotherspoon, D. J. J., Coghlan, B. P., & McGregor, I. (1992). The erosion and movement of sediments and associated pollutants in combined drainage systems. Water Science and Technology, 25, 101–114.CrossRefGoogle Scholar
  13. Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. M. (2000a). Nutrient removal from swine lagoon effluent by duckweed. Transactions of the American Society of Agricultural Engineers, 43, 263–269.CrossRefGoogle Scholar
  14. Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. M. (2000b). In-vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technology, 73, 13–20.CrossRefGoogle Scholar
  15. Bhat, S. C., Goswami, S., & Ghosh, U. C. (2005). Removal of trace chromium (VI) from contaminated water: Biosorption by Ipomea aquatica. Journal of Environmental Science and Engineering, 47, 316–321.Google Scholar
  16. Bhat, M. M., Yazdani, T., Narain, K., Yunus, M., & Shukla, R. N. (2009). Water quality status of some urban ponds of Lucknow, Uttar Pradesh. Journal of Wetlands Ecology, 2, 67–73.Google Scholar
  17. Bhat, M. M., Narain, K., Andrabi, S. Z., Shukla, R. N., & Yunus, M. (2012a). Assessment of heavy metal pollution in urban pond ecosystems. Universal Journal of Environmental Research and Technology, 2(4), 225–232.Google Scholar
  18. Bhat, M. M., Narain, K., Ahmad, A., Shukla, R. N., & Yunus, M. (2012b). Seasonal variations of physico-chemical characteristics in several ponds of Lucknow city affected by urban drainage. Advances in Environmental Biology, 6(10), 2654–2662.Google Scholar
  19. Bhat, M. M., Narain, K., Shukla, R. N., & Yunus, M. (2013). Apportionment of pollution loads arising from catchments in pond water bodies. Advances in Applied Science Research, 4(4), 436–441.Google Scholar
  20. Bhuyan, S. J., Marzen, L. J., Koelliker, J. K., Harrington, J. A., & Barnes, P. L. (2001). Assessment of runoff and sediment yield using remote sensing, GIS and AGNPS. Journal of Soil and Water Conservation, 57, 351–364.Google Scholar
  21. Biswas, A. K., & Tortajada, C. (2011). Water quality management: An introductory framework. International Journal of Water Resources Development, 27(1), 5–11.CrossRefGoogle Scholar
  22. Bortey-Sam, N., Nakayama, S. M. M., Ikenaka, Y., Akoto, O., Baidoo, E., Mizukawa, H., & Ishizuka, M. (2015). Healthrisk assessment of heavy metals and metalloids in drinkingwater from communities near gold mines in Tarkwa, Ghana. Environmental Monitoring and Assessment, 187, 397.CrossRefGoogle Scholar
  23. Boyd, C. E. (1969). Vascular aquatic plants for mineral nutrient removal from polluted waters. Economic Botany, 24, 95–103.CrossRefGoogle Scholar
  24. Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35, 11–17.CrossRefGoogle Scholar
  25. Brix, H., & Schierup, H. H. (1989). The use of aquatic macrophytes in water pollution control. Ambio, 18, 100–197.Google Scholar
  26. Brown, L. R., Gray, R. H., Hugies, R. M., & Meador, M. R. (2005). Introduction to effects of urbanization on stream ecosystems. American Fisheries Society Symposium, 47, 1–8.Google Scholar
  27. Brune, A., Urbach, W., & Dietz, K. (1994). Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant, Cell & Environment, 17, 153–162.CrossRefGoogle Scholar
  28. Bu, F. P., & Xu, X. Y. (2013). Planted floating bed performance intreatmentofeutrophicriverwater. Environmental Monitoring and Assessment, 185, 9651–9662.CrossRefGoogle Scholar
  29. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 83, 559–568.CrossRefGoogle Scholar
  30. Chan, N. W. (2012). Managing urban rivers and water quality in Malaysia for sustainable water resources. Water Resources Development, 28(2), 343–354.CrossRefGoogle Scholar
  31. Choe, J. S., Bang, K. W., & Lee, J. H. (2002). Characterization of surface runoff in urban areas. Water Science and Technology, 45, 249–254.CrossRefGoogle Scholar
  32. Chow, T. J., Snyder, C. B., Snyder, H. G., & Earl, J. L. (1976). Lead content of some marine organisms. Journal of Environmental Science and Health, Part A, 11, 33–44.CrossRefGoogle Scholar
  33. Christensen, E. R., & Chien, N. K. (1981). Fluxes of arsenic, lead, zinc and cadmium to Green Bay and Lake Michigan sediments. Environmental Science and Technology, 15, 553–558.CrossRefGoogle Scholar
  34. Chung, I. H., & Jeng, S. S. (1974). Heavy metal pollution of Ta-Tu River. Bulletin of the Institute of Zoology, Academy of Science, 13, 69–73.Google Scholar
  35. Cordery, I. (1976). Some effects of urbanization on streams. Civil Engineering Transactions, Institution of Engineers, Australia, 18, 7–11.Google Scholar
  36. Das, S., Goswami, S., & Talukdar, A. D. (2014). A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin of Environmental Contamination and Toxicology, 92(2), 169–174.CrossRefGoogle Scholar
  37. Dearing, J. A., Elner, J. J., & Happey-Wood, C. M. (1981). Recent sediment flux and erosional processes in a Welsh upland lake-catchment based on magnetic susceptibility measurements. Quaternary Research, 16, 356–372.CrossRefGoogle Scholar
  38. Deaver, E., Moore, M. T., Cooper, C. M., & Knight, S. S. (2005). Efficiency of three aquatic macrophytes in mitigating nutrient run-off. International Journal of Ecology and Environmental Sciences, 31, 1–7.Google Scholar
  39. Deletic, A., & Maksimovic, C. T. (1998). Evaluation of water quality factors in storm water runoff from paved areas. Journal of Environmental Engineering, 124, 869–878.CrossRefGoogle Scholar
  40. Denny, H., & Wilkins, D. (1987). Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. The New Phytologist, 106, 525–534.Google Scholar
  41. Depledge, M. H., Weeks, J. M., & Bjerregaard, P. (1993). Heavy metals. In P. Calow (Ed.), Handbook of ecotoxicology (Vol. 2, pp. 79–99). Oxford: Blackwell.Google Scholar
  42. Dhananjayan, V., Muralidharan, S., & Peter, V. R. (2012). Occurrence and distribution of polycyclic aromatic hydrocarbons in water and sediment collected along the Harbour Line, Mumbai, India. International Journal of Oceanography, 2012, 1–7. Scholar
  43. Dorval, J., Leblond, V. S., & Hentela, A. (2003). Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquatic Toxicology, 63, 229–241.CrossRefGoogle Scholar
  44. Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment, 111, 151–168.CrossRefGoogle Scholar
  45. Eichenberger, E. (1993). Correlation between necessity and toxicity of metals in water ecosystems. In Some problems of metal ions toxicity (pp. 62–87). Moscow: Mir Publishing House.Google Scholar
  46. El-Gendy, A. S., Biswas, N., & Bewtra, J. K. (2005). A floating aquatic system employing water hyacinth for municipal landfill leachate treatment: Effect of leachate characteristics on the plant growth. Journal of Environmental Engineering and Science, 4, 227–240.CrossRefGoogle Scholar
  47. Elliott, S., & Sorrell, B. (2002). Lake Manager’s handbook, land–water interactions (pp. 61–62). Wellington: Ministry for the Environment.Google Scholar
  48. Ellis, J., Shutes, R., Revitt, D., & Zhang, T. (1994). Use of macrophytes for pollution treatment in urban wetlands. Resources, Conservation and Recycling, 11, 1–12.CrossRefGoogle Scholar
  49. EL-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture, 179, 149–168.CrossRefGoogle Scholar
  50. Ernst, W., Verkleij, J., & Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229–248.CrossRefGoogle Scholar
  51. Falbo, M. B., & Weaks, T. E. (1990). A comparison of Eichhornia crassipes (Pontederiaceae) and Sphagnum quinquefarium (Sphagnaceae) in treatment of acid mine water. Economic Botany, 44, 40–49.CrossRefGoogle Scholar
  52. Farm, C. (2002). Evaluation of the accumulation of sediment and heavy metals in a storm-water detention basin. Water Science and Technology, 45, 105–112.CrossRefGoogle Scholar
  53. Fernandes, C., Fontaínhas-Fernandes, A., Cabral, D., & Salgado, M. A. (2008). Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz–Paramos lagoon, Portugal. Environmental Monitoring and Assessment, 136, 267–275.CrossRefGoogle Scholar
  54. Fitzpatrick, F. A., Harris, M. A., Arnold, T. L., & Richards, K. D. (2004). Urbanization influences on aquatic communities in North-Eastern Illinois streams. Journal of the American Water Resources Association, 40, 461–475.CrossRefGoogle Scholar
  55. Forstner, U., & Whittman, G. T. W. (Eds.). (1979). Metal pollution in the aquatic environment (p. 486). Berlin/Heidelberg/New York: Springer.Google Scholar
  56. Foster, I. D. L., & Dearing, J. A. (1987). Quantification of long term trends in atmospheric pollution and agricultural eutrophication: A lake-watershed approach. IAHS Publication, 168, 173–189.Google Scholar
  57. Fulazzaky, M. A., Seong, T. W., & Masrin, M. I. M. (2010). Assessment of water quality status for the Selangor River in Malaysia. Water, Air, and Soil Pollution, 205, 63–77.CrossRefGoogle Scholar
  58. Galiulin, R. V. (1994). Inventory and recultivation of the agro landscape soil cover contaminated by different chemical substances. Agrochemistry, 7(8), 132–143.Google Scholar
  59. Gazi, N. W. R., & Steven, P. K. S. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70, 225–230.CrossRefGoogle Scholar
  60. Geiger WF (1987) Flushing effects in combined drainage systems. In: Proceedings of the 4th International Conference on Urban Storm Drainage, Lausanne, Switzerland, pp. 46.Google Scholar
  61. Ghaderian, S. M., Mohttadi, A., Rahiminejad, M. R., & Baker, A. J. M. (2007). Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution, 145, 293–298.CrossRefGoogle Scholar
  62. Gijzen, H. J., & Veenstra, S. (2000). Duckweed-based wastewater treatment for rational resource recovery and reuse. In E. J. Olguin, G. Sánchez, & E. Hérnandez (Eds.), Environmental biotechnology and cleaner bioprocesses (pp. 83–100). London: Taylor and Francis.Google Scholar
  63. Gopal, B. (1999). Natural and constructed wetlands for wastewater treatment: Potentials and problems. Water Science and Technology, 40(3), 27–35.CrossRefGoogle Scholar
  64. Gotheberg, A., Greger, M., & Bengtsson, B. E. (2002). Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environmental Toxicology and Chemistry, 21, 1934–1939.CrossRefGoogle Scholar
  65. Gowd, S. S., & Kotaiah, B. (2000). Seasonal variation of water quality in a tropical Kalyani reservoir, near Tirupati. Indian Journal of Environmental Protection, 20, 452–455.Google Scholar
  66. Gray, L. (2004). Changes in water quality and macroinvertebrate communities resulting from urban stormflows in the Provo River, Utah, USA. Hydrobiologia, 518, 33–46.CrossRefGoogle Scholar
  67. Greipsson, S. (2011). Phytoremediation. Nature Education Knowledge, 2, 7.Google Scholar
  68. Griffin, Jr., Gizzard, D. M., Randall, T. J., Hessle, C. W., & Hartigan, J. P. (1980). Analysis of non-point pollution export from small catchments. Journal WPCF, 52, 780–790.Google Scholar
  69. Gulati, K. L., Nagpaul, K. K., & Bukhari, S. S. (1979). Uranium, boron, nitrogen, phosphorus and potassium in leaves of mangroves, Mahasagar. Bulletin of the National Institute of Oceanography, 12, 183–186.Google Scholar
  70. Gupta, M., & Devi, S. (1995). Uptake and toxicity of cadmium in aquatic ferns. Journal of Environmental Biology, 16, 131–136.Google Scholar
  71. Gupta, K., & Saul, A. J. (1996). Specific relationships for the first flush load in combined drainage systems. Water Research, 30, 1244–1252.CrossRefGoogle Scholar
  72. Gupta, P., & Srivastava, N. (2006). Effects of sub-lethal concentrations of zinc on histological changes and bioaccumulation of zinc by kidney of fish Channa punctatus (Bloch). Journal of Environmental Biology, 27, 211–215.Google Scholar
  73. Gupta, S. C., Rathore, G. S., & Mathur, G. C. D. (2001). Hydro-chemistry of Udaipur lakes. Indian Journal of Environmental Health, 43, 38–44.Google Scholar
  74. GWP Technical Advisory Committee. (2000). TAC background paper no. 4 (pp. 1–15). Stockholm: Global Water Partnership. Integrated Water Resources Management.Google Scholar
  75. Hakanson, L., & Jansson, M. (1983). Principles of lake sedimentology (Vol. 3, p. 16). Berlin: Springer.CrossRefGoogle Scholar
  76. Hassan, S. H., Talat, M., & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichhornia crassipes). Bioresource Technology, 98, 918–928.CrossRefGoogle Scholar
  77. Hernández, E., Olguín, E. J., Trujillo, S., & Vivanco, J. (1997). Recycling and treatment of anaerobic effluents from pig waste using Lemna sp. under temperate climatic conditions. In D. L. Wise (Ed.), Global environmental biotechnology (pp. 293–304). Amsterdam: Elsevier.Google Scholar
  78. HO, Y. B. (1988). Metal levels in three intertidal macroalgae in Hong Kong waters. Aquatic Botany, 29, 367–372.CrossRefGoogle Scholar
  79. Hoo, L. S., Samat, A., & Othman, M. R. (2004). The level of selected Heavy metals (Cd, Cu, Fe, Pb, Mn and Zn) at residential area nearby Labu river system Riverbank, Malaysia. Research Journal of Chemistry and Environment, 8, 24–29.Google Scholar
  80. Ismail, A. S., Abael-Sabour, R. M., & Radwan. (1996). Water hyacinth as an indicator for heavy metal pollution in different selected sites and water bodies around greater Cairo Egypt. Journal of Soil Science, 36, 343–354.Google Scholar
  81. Jackson, L., Rasmussen, J., & Kalff, J. (1994). A mass balance analysis of trace metals in two weedbeds. Water, Air, and Soil Pollution, 75, 107–119.CrossRefGoogle Scholar
  82. Jain, S. K., Vasudevan, P., & Jha, N. K. (1989). Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes, 28, 115–126.CrossRefGoogle Scholar
  83. Jana, S., & Chaudhari, M. A. (1982). Senescence in submerged aquatic angiosperms: Effects of heavy metal. The New Phytologist, 90, 477–484.CrossRefGoogle Scholar
  84. Johnes, P. J., Moss, B., & Phillips, G. (1996). The determination of total nitrogen and total phosphorus concentrations in freshwaters from land-use, stocking headage and population data: Testing of a model for use in conservation and water quality management. Freshwater Biology, 36, 451–473.CrossRefGoogle Scholar
  85. Joliffe, I. B. (1995). Hydrological cycle and impacts of urbanization. In M. G. Sharpin (Ed.), Environmental aspects of urban drainage, Concord Function Centre, Sydney, 22 August (pp. 1–20). Sydney: Stormwater Industry Association.Google Scholar
  86. Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. In Lewis Publishers. Boca Raton: Florida.Google Scholar
  87. Kamal, M., Ghalya, A. E., Mahmouda, N., & Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.CrossRefGoogle Scholar
  88. Karthikeyan, S., Palaniappan, P. L. R. M., & Sabhanayakam, S. (2007). Influence of pH and water hardness upon nickel accumulation in edible fish Cirrhinus mrigala. Journal of Environmental Biology, 28, 489–492.Google Scholar
  89. Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., & Forster, C. F. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92, 197–200.CrossRefGoogle Scholar
  90. Kramer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16, 133–141.CrossRefGoogle Scholar
  91. Kreuzig, R. (2005). Phytoremediation: Potential of plants to clean-up polluted soils. Braunschweig University of Technology, Institute of Ecological Chemistry and Waste Analysis.Google Scholar
  92. Kulli, B., Balmer, M., Krebs, R., Lothenbach, B., Geiger, G., & Schulin, R. (1999). The influence of nitrillotriacetate on heavy metal uptake of lettuce and ryegrass. Journal of Environmental Quality, 28, 1699–1705.CrossRefGoogle Scholar
  93. Kumar, A. R., & Riyazuddin, P. (2006). Chemical speciation of trace metals in aquatic environment – An overview. Research Journal of Chemistry and Environment, 10, 93–103.Google Scholar
  94. Kusin, F. M., Muhammad, S. N., Zahar, M. S. M., & Madzin, Z. (2016a). Integrated river basin management: Incorporating the use of abandoned mining pool and implication on waterquality status. Desalination and Water Treatment, 57(60), 29126–29136.CrossRefGoogle Scholar
  95. Kusin, F. M., Zahar, M. S. M., Muhammad, S. N., Mohamad, N. D., Zin, Z. M., & Sharif, S. M. (2016b). Hybrid off-river augmentation system as an alternative raw water resource: The hydrogeochemistry of abandoned mining ponds. Environment and Earth Science, 75(3), 1–15.CrossRefGoogle Scholar
  96. Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.CrossRefGoogle Scholar
  97. Lazzarotto, P., Prasuhn, V., Butscher, E., Crespi, C., Fluhler, H., & Stamm, C. (2005). Phosphorus export dynamics from two Swiss grassland catchments. Journal of Hydrology, 304, 139–150.CrossRefGoogle Scholar
  98. Lee, J. H., Bang, K. W., Choe, J. S., Yu, M. J., & Ketchum, L. H. (2002). First flush analysis of urban storm runoff. The Science of the Total Environment, 293, 163–175.CrossRefGoogle Scholar
  99. Lipp, E. K., Kurz, R., Vincent, R., Rodriguez-Palacios, C., Farrah, S. R., & Rose, J. B. (2001). The effects of seasonal variability and weather on microbial faecal pollution and enteric pathogens in a subtropical estuary. Estuaries, 24, 491–497.CrossRefGoogle Scholar
  100. Lougheed, V. L., Crosbie, B., & Chow-Fraser, P. (2001). Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: Latitude, land use, and water quality effects. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1603–1612.CrossRefGoogle Scholar
  101. Lukina, L. F., & Smirnova, N. N. (1988). Physiology of higher aquatic plants (p. 188). Kiev: Naukova Dumka Publishing House.Google Scholar
  102. Ma, L., He, F., Huang, T., Zhou, Q. H., Zhang, Y., & Wu, Z. B. (2016). Nitrogen and phosphorus transformations and balancein a pond-ditch circulation system for rural polluted water treatment. Ecological Engineering, 94, 117–126.CrossRefGoogle Scholar
  103. Maberly, S. C., King, L., Gibson, C. E., May, L., Jones, R. I., Dent, M. M., & Crawford, J. (2003). Linking nutrient limitation and water chemistry in upland lakes to catchment characteristics. Hydrobiologia, 506–509, 83–91.CrossRefGoogle Scholar
  104. Mahvi, A. H., & Mardani, G. (2005). Determination of Phenanthrene in urban runoff of Tehran, Capital of Iran. Iranian Journal of Environmental Health Science and Engineering, 2(2), 5–11.Google Scholar
  105. Maine, M., Duarte, M., & Sune, N. (2001). Cadmium uptake by floating macrophytes. Water Research, 35, 2629–2634.CrossRefGoogle Scholar
  106. Maine, M. A., Sune, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Research, 38, 1494–1501.CrossRefGoogle Scholar
  107. Mal, T., Adorjan, P., & Corbett, A. (2002). Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environmental Pollution, 120, 307–311.CrossRefGoogle Scholar
  108. Mallin, M., Williams, K., Esham, E., & Lowe, R. (2000). Effect of human development on bacteriological water quality in coastal watershed. Ecological Applications, 10, 1047–1056.CrossRefGoogle Scholar
  109. Mangkoedihardjo, S. (2007). Phytotechnology integrity in environmental sanitation for sustainable development. Journal of Applied Sciences Research, 3(10), 1037–1044.Google Scholar
  110. Marsalek, J. (1998). Challenges in urban drainage. In J. Marsalek, C. Maksimovic, E. Zeman, & R. Price (Eds.), Hydroinformatics tools for planning, design, operation and rehabilitation of sewer systems (pp. 1–23). Dordech/Boston/London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  111. Marzen, L. J., Bhuyan, S. J., Harrington, J. A., Koelliker, J. K., Frees, L. D., & Volkman, C. G. (2000). Water quality modeling in the red rock creek watershed, Kansas. Proceedings of Applied Geography Conferences, 23, 175–182.Google Scholar
  112. Meitei, M. D., & Prasad, M. N. V. (2013). Lead (II) and cadmium (II) biosorption. Chemical Engineer, 1(3), 200–207.Google Scholar
  113. Memon, A. R., Aktoprakligül, D., ÖZdemür, A., & Vertii, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany, 25, 111–121.Google Scholar
  114. Milic, D., Lukovic, J., Ninkov, J., Zeremski-Skoric, T., Zoric, L., Vasin, J., & Milic, S. (2012). Heavy metal content inhalophytic plants frominland and maritime salineareas. Central European Journal of Biology, 7, 307–317.Google Scholar
  115. Miretzkey, P., Saralegui, A., & Fernandez Cirelli, A. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997–1005.CrossRefGoogle Scholar
  116. Mishra, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99, 7091–7097.CrossRefGoogle Scholar
  117. Mitsch, W. J., & Gooselink, J. G. (2007). Wetlands (4th ed., pp. 1–34). New York: Wiley.Google Scholar
  118. Mitsch, W. J., & Gosselink, J. G. (1993). Wetlands (2nd ed., p. 539). New York: Van Nostrand-Reinhold.Google Scholar
  119. Mohanraj, R., Sathishkumar, M., Azeez, P. A., & Sivakumar, R. (2000). Pollution status of wetlands in urban Coimbatore, Tamilnadu, India. Bulletin of Environmental Contamination and Toxicology, 64, 638–643.CrossRefGoogle Scholar
  120. Mohapatra, U. K., & Singh, B. C. (1999). Trace metals in drinking water from different sources in old capital city of Cuttak. Indian Journal of Environmental Health, 41, 115–120.Google Scholar
  121. Moshiri, G. A. (1993). Constructed wetlands for water quality improvement. Boca Raton, FL: Lewis Publishers, CRC Press.Google Scholar
  122. Mungur, A. S., Shutes, R. B. E., Revitt, D. M., & House, M. A. (1995). An assessment of metal removal from highway runoff by a natural wetland. Water Science and Technology, 32, 169–175.CrossRefGoogle Scholar
  123. Nahlik, A. M., & Mitsch, W. J. (2006). Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28, 246–257.CrossRefGoogle Scholar
  124. Nihan, O., & Elmaca, A. (2007). Performance of duckweed (Lemna minor L.) on different types of waste water treatment. Journal of Environmental Biology, 27, 307–314.Google Scholar
  125. Noble, R. T., Dorsey, J., Leecaster, M. K., Reid, D., Schiff, K. C., & Weisberg, S. B. (2000). A regional survey of the microbiological water quality along Southern California bight shoreline. Environmental Monitoring and Assessment, 64, 435–447.CrossRefGoogle Scholar
  126. Novotny, V. (1994). Diverse solutions for diffuse pollution, vol. 1, 24–31. Water Quality International, International Association for Water Quality.Google Scholar
  127. Novotny, V. (1999). Integrating diffuse pollution control and water body restoration into watershed management. Journal of the American Water Resources Association, 35, 717–727.CrossRefGoogle Scholar
  128. Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, 279, 409–411.CrossRefGoogle Scholar
  129. Nyer, E. K., & Gatliff, E. G. (1996). Phytoremediation. Groundwater Monitoring and Remediation, 16, 58–62.CrossRefGoogle Scholar
  130. O’Loughlin, G. (1994). Pollution prevention and politics – The recent experience in Sydney. Water Science and Technology, 30, 13–22.CrossRefGoogle Scholar
  131. Olguin, E. J., Rodriguez, D., Sanchez, G., Hernandez, E., & Ramirez, M. E. (2003). Productivity, protein content and nutrient removal from anaerobic effluents of coffee wastewater in Salvinia minima ponds under subtropical conditions. Acta Biotechnologica, 23, 259–270.CrossRefGoogle Scholar
  132. Othman, F., Eldin, M. E. A., & Mohamed, I. (2012). Trend analysis of a tropical urban river water quality in Malaysia. Journal of Environmental Monitoring, 14, 3164–3173.CrossRefGoogle Scholar
  133. Park, K. S., & Shin, H. W. (2007). Studies on phyto and zooplankton composition and its relation to fish productivity in a west coast fish pond ecosystem. Journal of Environmental Biology, 28, 415–422.Google Scholar
  134. Pavendan, P., Anbu selvan, S., & Sebastian rajasekaran, C. (2011). Physico Chemical and microbial assessment of drinking water from different water sources of Tiruchirappalli District, South India. European Journal of Experimental Biology, 1(1), 183–189.Google Scholar
  135. Pegram, G. C., Görgens, A. H. M. (2001). A guide to non-point source assessment (Water Research Commission Report TT142/01, pp 115).Google Scholar
  136. Pilon-Smiths, E., & Pilon, M. (2002). Phytoremediation of metals using transgenic plants. Critical Reviews in Plant Sciences, 21, 439–456.CrossRefGoogle Scholar
  137. Pinto, C. L., Caconia, A., & Souza, M. (1987). Utilization of water hyacinth for removal and recovery of silver from industrial wastewater. In D. Athie (Ed.), The use of macrophytes in water pollution controls (Water Sci Technol) (Vol. 19, pp. 89–102).Google Scholar
  138. Polkowska, ò., Grynkiewicz, M., Zabiegala, B., & NamieÑnik, J. (2001). Levels of pollutants in runoff water from roads with high traffic intensity in the City of Gda½sk, Poland. Polish Journal of Environmental Studies, 10, 351–363.Google Scholar
  139. Pote, J., Haller, L., Loizeau, J. L., Bravo, A. G., Sastre, V., & Wildi, W. (2008). Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the bay of Vidy, Lake Geneva, Switzerland. Bioresource Technology, 99, 7122–7131.CrossRefGoogle Scholar
  140. Prajapati, S. K., Meravi, N., & Singh, S. (2012). Phytoremediation of Chromium and Cobalt using Pistia stratiotes: A sustainable approach. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(2), 136–138.Google Scholar
  141. Prakash, O., Mehroira, I., & Kumar, P. (1987). Removal of cadmium from water by water hyacinth. Journal of Environmental Engineering, 113, 352–365.CrossRefGoogle Scholar
  142. Praveena, S. M., Radojevic, M., Abdullah, M. H., & Aris, A. Z. (2008). Application of sediment quality guidelines in the assessment of mangrove surface sediment in Mengkabong lagoon, Sabah, Malaysia. Iran Journal of Environmental Health Science and Engineering, 5(1), 35–42.Google Scholar
  143. Qin, H. J., Zhang, Z. Y., & Liu, M. H. (2016). Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecological Engineering, 95, 753–762.CrossRefGoogle Scholar
  144. Rai, P. K. (2007). Wastewater management through biomass of Azolla pinnata: An ecosustainable approach. Ambio: A Journal on Human Environment, 36, 426–428.CrossRefGoogle Scholar
  145. Rai, P. K., & Tripathi, B. D. (2007a). Heavy metals adsorption characteristics of free floating aquatic macrophyte Spirodela poyrhhiza. Journal of Environmental Research and Development, 5, 656–660.Google Scholar
  146. Rai, P. K., & Tripathi, B. D. (2007b). Heavy metals removal using nuisance blue green alga Microcystis in continuous culture experiment. Environmental Sciences, 4, 53–59.CrossRefGoogle Scholar
  147. Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecological Engineering, 157, 1–8.Google Scholar
  148. Ramachandra TV, Solanki M (2007) Ecological assessment of lentic water bodies of Bangalore. ENVIS Technical Report, Vol. 25, pp. 8–9.Google Scholar
  149. Ramachandra, T. V., Kiran, R., & Ahalya, N. (2002). Status, conservation and management of wetlands (p. 3). New Delhi: Allied Publishers (P) Limited.Google Scholar
  150. Ran, N., Agami, M., & Oron, G. (2004). A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel. Water Research, 38, 2241–2248.CrossRefGoogle Scholar
  151. Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 193–229). New York: Wiley.Google Scholar
  152. Raskin, I., Nanda Kumar, P. B. A., Dushenkov, V., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinions Biotechnology, 5, 285–290.CrossRefGoogle Scholar
  153. Ray, M. K., & Majumdar, S. (2005). Evaluating economic sustainability of urban and peri-urban waterbodies, a case study from Kolkata Ponds. In N. Sengupta & J. Badyopadhyay (Eds.), Biodiversity and quality of life (pp. 135–146). New Delhi: Macmillan.Google Scholar
  154. Renburg, I. (1986). Concentration and annual accumulation of heavy metals in lake sediments: Their significance in studies of the history of heavy metal pollution. Hydrobiologia, 143, 379–385.CrossRefGoogle Scholar
  155. Roley, S. S., Tank, J. L., Tyndall, J. C., & Witter, J. D. (2016). How cost-effective are cover crops, wetlands, and two-stage ditches for nitrogen removal in the Mississippi River Basin? Water Resources and Economics, 15, 43–56.CrossRefGoogle Scholar
  156. Saget, A., Chebbo, G., & Desbordes, M. (1995). Urban discharges during wet weather: What volumes have to be treated? Water Science and Technology, 32, 225–232.CrossRefGoogle Scholar
  157. Sahu, R. K., Naraian, R., & Chandra, V. (2007). Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. Clean, 35, 261–265.Google Scholar
  158. Salt, D. E., Blaylock, M. N. P., Kumar, B. A., Dushenkov, V., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.Google Scholar
  159. Schindler, D. W. (1997). Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes, 11, 1043–1067.CrossRefGoogle Scholar
  160. Schneider, I. A. H., Rubio, J., & Smith, R. W. (1999). Effect of some mining chemicals on biosorption of Cu (II) by the nonliving biomass of the freshwater macrophyte Potamogeton lucens. Minerals Engineering, 12, 255–260.CrossRefGoogle Scholar
  161. Schreiber, J. D., Rebich, R. A., & Cooper, C. M. (2001). Dynamics of diffuse pollution from US southern catchements. Water Research, 35, 2534–2542.CrossRefGoogle Scholar
  162. Sculthorpe, C. D. (1967). The biology of aquatic vascular plants (p. 610). New York: St. Martin’s Press.Google Scholar
  163. Settacharnwit, S., Buckney, R. T., & Lim, R. P. (2003). The nutrient status of Nong Han, a shallow tropical lake in North-Eastern Thailand: Spatial and temporal variations. Lakes & Reservoirs: Research and Management, 8, 189–200.CrossRefGoogle Scholar
  164. Shastri, Y., & Pendse, D. C. (2001). Hydro biological study of Dahikhura reservoir. Journal of Environmental Biology, 22, 67–70.Google Scholar
  165. Shinya, M., Tsuruho, K., Konishi, T., & Ishikawa, M. (2003). Evaluation of factors influencing diffuse pollutant loads in urban highway runoff. Water Science and Technology, 47, 227–232.CrossRefGoogle Scholar
  166. Shrivastava, S., & Rao, K. S. (1997). Observation on the utility of integrated aquatic macrophyte base system for mercury toxicity removal. Bulletin of Environmental Contamination Toxicology, 59, 777–782.CrossRefGoogle Scholar
  167. Singh, D., Nath, K., Trivedi, S. P., & Sharma, Y. K. (2008). Impact of copper on haematological profile of freshwater fish, Channa punctatus. Journal of Environmental Biology, 29, 253–257.Google Scholar
  168. Singh, N. K. S., Devi, C. B., Sudarshan, M., Meetei, N. S., Singh, T. B., & Singh, N. R. (2013). Influence of Nambul river on the water quality of fresh water in Loktak lake. International Journal of Water Resources and Environmental Engineering, 5(6), 321–327.Google Scholar
  169. Singhal, V., & Rai, J. P. N. (2003). Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresource Technology, 86, 221–225.CrossRefGoogle Scholar
  170. Smitha, P. G., Byrappa, K., & Ramaswamy, S. N. (2007). Physico-chemical characteristics of water samples of Bantwal Taluk, South-Western Karnataka, India. Journal of Environmental Biology, 28, 591–595.Google Scholar
  171. Sonneman, J. A., Walsh, C. J., Breen, P. F., & Sharpe, A. K. (2001). Effects of urbanization on streams of the Melbourne region, Victoria, Australia. Freshwater Biology, 46, 553–565.CrossRefGoogle Scholar
  172. Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22, 27–42.CrossRefGoogle Scholar
  173. Srivastava, N., Agarwal, M., & Tyagi, A. (2003). Study of physico-chemical characteristics of water bodies around Jaipur. Journal of Environmental Biology, 24, 177–180.Google Scholar
  174. Sriyaraj, K., & Shutes, R. B. E. (2001). An assessment of the impact of motorway runoff on a pond, wetland and stream. Environment International, 26, 433–439.CrossRefGoogle Scholar
  175. Storelli, M. M., Storelli, A., D’ddabbo, R., Marano, C., Bruno, R., & Marcotrigiano, G. O. (2005). Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: Overview and evaluation. Environmental Pollution, 135, 163–170.CrossRefGoogle Scholar
  176. Suelee, A. L., HasanSNMS, K. F. M., Yusuff, F. M., & Ibrahim, Z. Z. (2017). Phytoremediation potential of Vetiver Grass (Vetiveria zizanioides) for treatment of metal-contaminated water. Water, Air, and Soil Pollution, 228, 158. Scholar
  177. Thorat, S. R., & Sultana, M. (2000). Pollution status of Salim Ali Lake, Aurangabad (M.S.). Journal of Pollution Research, 19, 307–309.Google Scholar
  178. Tilak, K. S., Veeraiah, K., & Milton Prema Raju, J. (2007). Effects of ammonia, nitrite and nitrate on haemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). Journal of Environmental Biology, 28, 45–47.Google Scholar
  179. Tremp, H., & Kohler, A. (1995). The usefulness of macrophyte monitoring systems, exemplified on eutrophication and acidification of running waters. Acta Botanica Gallica, 142, 541–550.CrossRefGoogle Scholar
  180. Truong P (1999) Vetiver grass technology for mine tailings rehabilitation. Proceedings of the first Asia-Pacific conference on ground and water bioengineering for erosion control and slope stabilization, Manila.Google Scholar
  181. Truong P, Stone R (1996) Vetiver grass for landfill rehabilitation: Erosion and leachate control. Report to DNR and Redland Shire Council, Queensland, Australia.Google Scholar
  182. Tuzen, M. (2003). Determination of heavy metals in fish samples of the Mid Dam Lake Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80, 119–123.CrossRefGoogle Scholar
  183. US Environmental Protection Agency (USEPA), Office of Water. (1998). National water quality inventory: 1996 report to congress (p. 305). Washington, DC: US Environmental Protection Agency (USEPA).Google Scholar
  184. USEPA. (1999). Phytoremediation resource guide. EPA/542/B-99/003, available online at
  185. USEPA. (2000). Introduction to phytoremediation. EPA/600/R-99/107.Google Scholar
  186. Van Aardt, W. J., & Erdmann, R. (2004). Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three hard water dams of the Mooi River catchment area, South Africa. Water SA, 30, 211–218.Google Scholar
  187. Van, A., & Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plant, Cell and Environment, 13, 195–206.CrossRefGoogle Scholar
  188. Van Steveninck, R., van Steveninck, M., & Fernando, D. (1992). Heavy metal (Zn, Cd) tolerance in selected clones of duckweed (Lemna minor). Plant and Soil, 146, 271–280.CrossRefGoogle Scholar
  189. Vardanyan, L., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32, 208–218.CrossRefGoogle Scholar
  190. Vidali, M. (2001). Bioremediation: An overview. Pure and Applied Chemistry, 73, 1163–1172.CrossRefGoogle Scholar
  191. Vorreiter L, Hickey C (1994) Incidence of the first flush phenomenon in catchments of the Sydney region, vol. 3, 359–364. National Conference Publication- Institute of Engineers, Australia.Google Scholar
  192. Wagh, V. M., Ghole, V. S., Wavde, P. N., Todkar, V. V., Kokate, K. K. (2008). Assessment of water quality of Mutha River in Pune City. GCE: Indo-Italian International Conference on Green and Clean Environment March 20–21, MAEER’s MIT College of Engineering, Pune.Google Scholar
  193. Walsh, C. J. (2000). Urban impact on the ecology of receiving waters: A framework for assessment, conservation and restoration. Hydrobiologia, 431, 107–114.CrossRefGoogle Scholar
  194. Wang, W., Zhen, W., & Lin, P. (1997). Content and dynamics of five heavy metal elements in the leaves of five mangrove species in Jiulong Estuary. Journal of Oceanography in Taiwan Strait, 16, 233–238.Google Scholar
  195. Weerasinghe, A., Ariyawnasa, S., & Weerasooriya, R. (2008). Phytoremediation potential of Ipomoea aquatica for Cr (VI) mitigation. Chemosphere, 70, 521–524.CrossRefGoogle Scholar
  196. Wetzel, R. G. (1975). Primary production. In B. A. Whitton (Ed.), River ecology (pp. 81–105). Berkeley: University of California Press.Google Scholar
  197. Wickramasinghe, S., & Jayawardana, C. K. (2018). Potential of aquatic macrophytes eichhornia crassipes, pistia stratiotes and salvinia molesta in phytoremediation of textile wastewater. Journal of water security, 4.
  198. Wu, Q. T., Wei, Z. B., & Quyang, Y. (2007). Phytoextraction of metal contaminated soil by Sedum alfredi H: Effects of chelator and coplanting. Water, Air, and Soil Pollution, 180, 131–139.CrossRefGoogle Scholar
  199. Wu, Q., Hu, Y., Li, S. Q., Peng, S., & Zhao, H. B. (2016). Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresource Technology, 211, 451–456.CrossRefGoogle Scholar
  200. WWDR. (2003). Water for people, water for life (The UN world water development report) (p. 9). New York: UNESCO.Google Scholar
  201. Yamane, Y., Nagashima, I., Izumikawa, S., & Murakami, A. (1993). Stormwater runoff of petroleum hydrocarbons in the Nogawa river basin in Tokyo. Journal of Japan Society on Water Environment, 16, 251–260.CrossRefGoogle Scholar
  202. Yang, H., Wang, G., Yang, Y., & XueB, W. B. (2014). Assessment of the impacts of land use changes on nonpoint source pollution inputs upstream of the three gorges reservoir. The Scientific World Journal, 2014, 1–15.Google Scholar
  203. Yeh, N., Yeh, P., & Chang, Y. H. (2015). Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews, 47, 616–622.CrossRefGoogle Scholar
  204. Yin, C. Q., & Mao, Z. P. (2002). Nonpoint pollution control for rural areas of China with ecological engineering technologies. Chinese Journal of Applied Ecology, 13(2), 229–232.Google Scholar
  205. Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoremediation of trace elements by wetland plants. Journal of Environmental Quality, 27, 715–721.CrossRefGoogle Scholar
  206. Zhang, M., Cui, L., Sheng, L., & Wang, Y. (2009). Distribution and enrichment of heavy metals among sediments, waterbody and plants in Hengshihu wetlands of northern China. Ecological Engineering, 35, 563–569.CrossRefGoogle Scholar
  207. Zhang, R., Jiang, D., Zhang, L., Cui, Y., Li, M., & Xiao, L. (2014). Distribution of nutrients, heavy metals and PAH’s affected by sediment dredging in the Wujin’gang River basin flowing into Meiliang bay of Lake Taihu. Environmental Science and Pollution Research, 21, 2141–2153.CrossRefGoogle Scholar
  208. Zhu, Y. L., Zayed, A. M., Qian, J. H., Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants. Journal of Environmental Quality, 28, 339–344.CrossRefGoogle Scholar
  209. Zolotukhina, E. Y., & Gavrilenko, E. E. (1989). Heavy metals in aquatic plants: Accumulation and toxicity. Biology Sciences, 9, 93–106.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohd. Muzamil Bhat
    • 1
  • R. N. Shukla
    • 2
  • M. Yunus
    • 3
  1. 1.Faculty- Environmental Science, School of SciencesIslamic University of Science and TechnologyPulwamaIndia
  2. 2.School of Environmental BiologyAwadesh Pratap Singh UniversityRewaIndia
  3. 3.Mohammad Ali Jauhar UniversityRampurIndia

Personalised recommendations