Analysis of Hydrology, Sediment Retention, Biogenic- Calcification and -Scavenging as Self-Remediative Lacustrine Functions.

  • Umar Nazir Bhat
  • Anisa Basheer Khan


Urban water bodies are indicators of anthropogenic intrusion surfacing mutability in intrinsic homeostasis. Ecological assessment of various bio-physicochemical variables at periodic intervals is vital for eventual implementation of management and conservation practices in lakes. An inter-annual monitoring of surface-waters, surface-sediments and dominant macrophytes for standard variables at 50 sampling sites in 5 zones (10 each) of Anchar and Dal lakes is carried out to assess their spatio-temporal heterogeneity under human pressures. Temperature, pH, conductivity and ionic composition of the epilimnion show p < 0.01 and R2 > 0.5. The trophic range for total-P exceeds critical eutrophic index (≤ 0.05 mgL−1) but nitrate-N persists beneath it (≤ 0.5 mgL−1) normally. Conductivity maintains superior solute richness though autotrophic assimilation and biocalcification episodes subsidize it towards summer. The anionic predominance of HCO3-(BIC) and Cl exist alongside cationic progression of Ca > Mg > Na > K. Lime-catchment adds to Ca ascendancy and hard-waters. Agricultural runoff links with K while Cl to faunal organic pollution. Superior nitrate concentration is accumulative of human actions (agriculture, farming, sewage, factories, etc.), spring fed lake-basin, preferential NH4+ autotrophic assimilation, geogenic N-pockets and forest surface runoff. Significant Coefficient of Determination (R2) for pH versus temperature, conductivity versus pH and temperature substantiate biological uptake and calcite co-precipitation. An equation with average worldwide stream abundance (mgL-1) of recorded Ca (> 15), Mg (> 4), K (> 2.3) and Na (> 6.3) besides observed average epilimnion trace element concentration (μgL−1) for As (> 2), Cd (> 1), Cr (> 1), Co (> 0.2), Cu (> 10), Fe (> 700), Pb (> 3), Mn (> 7), Ni (> 1), Se (> 0.2), Sn (> 0.1) and Zn (> 20) acclaim their anthropogenic origins. However, all priority pollutants (As, Cd, Cr, Cu, Pb, Ni and Se) continued below USEPA chronic levels. Fe and Zn exceed maximum permissible limits for irrigation. The flushing-out of harmful nutrient- and contaminant-levels due to semi-drainage hydrology recuperated the aqueous volume. Sediment assessment identifies Ca-Si domination with temporal gradients in pH, bicarbonate, conductivity, Organic Carbon (OC), Organic Matter (OM), Total Nitrogen (TN) and C/N. Almost no outliers in box-plots across the select sites suggest their tranquil nature. Element composition revealed the order of Si ˃ Ca ˃ Mg ˃ K ˃ Na ˃ P ˃ S ˃ Cl. Micro and trace element quantification denote the descending series of Fe ˃ Al ˃ Zn > Mn > Cu > Cr > Ni > Co > As > Sn > Pb > Cd while Hg and Se remained Below Detection Level (BDL). Sediment pH stayed on the basic side but slender acidic nature is noticed during late summer. Significant correlation for conductivity with OC and OM (p < 0.01) establish the latter a source for nutrient ions. Total-N is complementary to OC and OM of sediments too. Active/Passive-bioaccumulation or anoxic release from sediments tends to slight gradual decline in nutrient concentration till culmination of macrophytic growth phases. Enrichment Factor (EF), Geo-accumulation Index (Igeo) and Contamination Factor (CF) expound the contaminants to be largely anthropogenic. Integrated Pollution Index (IPI) and Pollution Load Index (PLI) catalog the lakes to have moderate metal contamination. Sediment Quality Guidelines (SQG’s) point to pollution status and associated ecological risks involved. Cr, Ni and Zn exceed SQG’s but Cd and Pb don’t transcend them. As is below Effects Range Low (ERL) and Cu lags in Probable Effect Concentration (PEC). The typical C/N < 10 infers autochthonous sediment OM with low decomposition rates. Upgraded [N]:[P] ratios parallel chronic nitrogen influx. Higher temperature and lower [N]:[P] ratio during summer develop internal loading of P. But higher Al, Ca and Fe proportions in sediments inactivate P mobilization. Curbing of external N and P loads is effective in remediation but the internal supplement compensates the loss. OM or Fe/Mn- oxide decomposition and reductive dissolution respectively separate bound trace-metals near hypolimnion-sediment overlap. Lower [Ca]:[Al] sponsor exsitu human Potentially Toxic Element (PTE) transport. Nonetheless, OM enriched sediments and calcite co-precipitation together curtails PTE mobility. Macrophytes optimize ambient water quality and sediment medium. The peak biomass (gm-2) values on dry weight basis are 880.2, 678.4, 182.4 and 45 for Myriophyllum aquaticum, Nelumbo nucifera, Ceratophyllum demersum and Salvinia natans respectively. Dry Weight, Productivity, Net Primary Productivity (NPP) and Specific Growth Rate institute affiliated variations but species Turn-Over is highest in case of S. natans and lowest for C. demersum. The species differ in tissue nutrient and trace element concentrations but correlate with ambient water-sediment medium. The peak nutrient uptake and bioconcentration coincide with peak biomass in summer and autumn. Bioconcentration Factor (BCF) indicates hyperaccumulation for most of the metals in case of C. demersum and S. natans. Removal Potential for different elements is divergent but the pattern is related which suggests unselective absorption. Turn-over Rates for elements closer to the reference value of 1 is significant. Bioavailability of nutrients and toxins becomes fractional conjointly by flushing hydrology, biological scavenging and biocalcification. An insitu self-reclaimed nutrient balance and eco-restoration is conceivable in the region of anthro-urban intensification by limiting human perturbations, practicing periodic dredging, sediment trapping, scaled-cum-selective deweeding and construction of vegetation buffer strips.


Assimilation Bicarbonates Conductivity Contamination Nutrients Resilience Spectrometer 



The authors would like to express sincere appreciation to Quality Control cum Leaf Tissue Analysis Lab, Sheri Kashmir Agricultural University of Science and Technology (SKAUST), Srinagar-191121; Central Instrumentation Facility (CIF), Pondicherry University- 605014 and Indian Institute of Technology and Management (IITM), Chennai- 600036 for their helpful attitude in facilitating lab and instrumentation services.


  1. Abell, J. M., Ozkundakci, D., & Hamilton, D. P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control. Ecosystems, 13(7), 966–977.CrossRefGoogle Scholar
  2. Abubakr, A., & Kundangar, M. R. D. (2009). Three decades of Dal lake pollution. Restoration, Ecology, Environment and Conservation, 15(4), 825–833.Google Scholar
  3. Akin, B. S., Atıcı, T., Katircioglu, H., & Keskin, F. (2010). Investigation of water quality on Gokçekayadam lake using multivariate statistical analysis, in Eskişehir, Turkey. Environmental Earth Sciences, 63(6), 1251–1261.CrossRefGoogle Scholar
  4. Algesten, G., Sobek, S., Bergstrom, A. K., Agren, A., Tranvik, L. J., & Jansson, M. (2003). Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 10(1), 141–147.CrossRefGoogle Scholar
  5. Allan, I., Vrana, B., Greenwood, R., Mills, G., Knutsson, J., Holmberg, A., & Guigues, N. (2006). Strategic monitoring for the European water framework directive. Trends in Analytical Chemistry, 25(7), 704–715.CrossRefGoogle Scholar
  6. Allison, S. D., Czimczik, C. I., & Treseder, K. K. (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14(5), 1156–1168.CrossRefGoogle Scholar
  7. Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). London: Blackie Academic and Professional.CrossRefGoogle Scholar
  8. Amari, T., Ghnaya, T., Debez, A., Taamali, M., Youssef, N. B., Lucchini, G., & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemumcrystallinum (halophyte) and Brassica juncea: Metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171(17), 1634–1644.CrossRefGoogle Scholar
  9. Ammar, R., Kazpard, V., Wazne, M., El Samrani, A. G., Amacha, N., Saad, Z., & Chou, L. (2015). Reservoir sediments: A sink or source of chemicals at the surface water-groundwater interface. Environmental Monitoring and Assessment, 187(9), 579.CrossRefGoogle Scholar
  10. ANZECC/ARMCANZ. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra 1–103.Google Scholar
  11. APHA. (2005). APHA, AWWA, & WEF. Standard methods for the examination of water and wastewater, 21st edn., Washington, DC.Google Scholar
  12. Arshid, S., Wani, A. A., Ganie, A. H., & Khuroo, A. A. (2011). On correct identification, range expansion and management implications of Myriophyllum aquaticum in Kashmir Himalaya, India. Check List, 7(3), 299–302.CrossRefGoogle Scholar
  13. Badar, B., Romshoo, S. A., & Khan, M. A. (2012). Integrating biophysical and socioeconomic information for prioritizing watersheds in a Kashmir Himalayan lake: A remote sensing and GIS approach. Environmental Monitoring and Assessment, 185(8), 6419–6445.CrossRefGoogle Scholar
  14. Bastami, K. D., Neyestani, M. R., Shemirani, F., Soltani, F., Haghparast, S., & Akbari, A. (2015). Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Marine Pollution Bulletin, 92(1), 237–243.CrossRefGoogle Scholar
  15. Batley, G. E. (2000). Implications of the new ANZECC/ARMCANZ water quality guidelines for mining companies. In: Grundon, NJ & Bell, LC. In Proceedings of the Fourth Australian Workshop on Acid Mine Drainage 221–229.Google Scholar
  16. Beck, M. W., Tomcko, C. M., Valley, R. D., & Staples, D. F. (2014). Analysis of macrophyte indicator variation as a function of sampling, temporal, and stressor effects. Ecological Indicators, 46, 323–335.CrossRefGoogle Scholar
  17. Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29(6), 2073–2089.CrossRefGoogle Scholar
  18. BerzasNevado, J. J., Rodriguez Martín-Doimeadios, R. C., Guzman Bernardo, F. J., Jimenez Moreno, M., Ortega Tardio, S., Sánchez-Herrera Fornieles, M. M., & Doncel Perez, A. (2009). Integrated pollution evaluation of the Tagus River in Central Spain. Environmental Monitoring and Assessment, 156(1), 461–477.CrossRefGoogle Scholar
  19. Bierman, P., Lewis, M., Ostendorf, B., & Tanner, J. (2009). A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecological Indicators, 11(1), 103–114.CrossRefGoogle Scholar
  20. Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73(1), 1–14.CrossRefGoogle Scholar
  21. Boyd, C. E., Tucker, C. S., & Somridhivej, B. (2016). Alkalinity and hardness: Critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 47(1), 6–41.CrossRefGoogle Scholar
  22. Bu, H., Meng, W., Zhang, Y., & Wan, J. (2014). Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators, 41, 187–197.CrossRefGoogle Scholar
  23. Bunn, S. E., & Davies, P. M. (2000). Biological processes in running waters and their implications for the assessment of ecological integrity. In Assessing the ecological integrity of running waters (pp. 61–70). Dordrecht: Springer.CrossRefGoogle Scholar
  24. Canavan, R. W., Slomp, C. P., Jourabchi, P., Van Cappellen, P., Laverman, A. M., & Van den Berg, G. A. (2006). Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimicaet Cosmochimica Acta, 70(11), 2836–2855.CrossRefGoogle Scholar
  25. Chambers, P. A., Lacoul, P., Murphy, K. J., & Thomaz, S. M. (2008). Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595(1), 9–26.CrossRefGoogle Scholar
  26. Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589–600.CrossRefGoogle Scholar
  27. Choi, K. Y., Kim, S. H., Hong, G. H., & Chon, H. T. (2012). Distributions of heavy metals in the sediments of south Korean harbors. Environmental Geochemistry and Health, 34(1), 71–82.CrossRefGoogle Scholar
  28. Chon, H. S., Ohandja, D. G., & Voulvoulis, N. (2012). The role of sediments as a source of metals in river catchments. Chemosphere, 88(10), 1250–1256.CrossRefGoogle Scholar
  29. Cook, C. D. (1996). Aquatic and wetland plants of India: A reference book and identification manual for the vascular plants found in permanent or seasonal fresh water in the subcontinent of India south of the Himalayas (Vol. 198548214, pp. 1–385). Oxford: Oxford University Press.Google Scholar
  30. Cotner, J. B., Kenning, J., & Scott, J. T. (2009). The microbial role in littoral zone biogeochemical processes: Why Wetzel was right. Verhandlungen des Internationalen Verein Limnologie, 30, 981–984.Google Scholar
  31. De Jonge, V. N., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia, 475(1), 1–19.CrossRefGoogle Scholar
  32. De Vicente, I., Guerrero, F., & Cruz-Pizarro, L. (2010). Chemical composition of wetland sediments as an integrator of trophic state. Aquatic Ecosystem Health and Management, 13(1), 99–103.CrossRefGoogle Scholar
  33. Dean, J. R., Eastwood, W. J., Roberts, N., Jones, M. D., Yigitbaşıoglu, H., Allcock, S. L., & Leng, M. J. (2015). Tracking the hydro-climatic signal from lake to sediment: A field study from Central Turkey. Journal of Hydrology, 529, 608–621.CrossRefGoogle Scholar
  34. Dhote, S. (2007). Role of Macrophytes in improving water quality of an aquatic eco-system. Journal of Applied Sciences and Environmental Management, 11(4), 133–135.Google Scholar
  35. Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., & Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 22(1), 1–10.CrossRefGoogle Scholar
  36. EEA. (2012). European waters – Assessment of status and pressures. Copenhagen: European Environment Agency.Google Scholar
  37. El-Otify, A. M. (2015). Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt. Journal of Basic and Applied Sciences, 4(4), 327–337.Google Scholar
  38. Elser, J. J., Andersen, T., Baron, J. S., Bergstrom, A. K., Jansson, M., Kyle, M., & Hessen, D. O. (2009). Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954), 835–837.CrossRefGoogle Scholar
  39. Estefan, G., Sommer, R., Ryan, J. (2013). Methods of soil, plant and water analysis. International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon.Google Scholar
  40. FAO (Food and agriculture organization) (2010) The wealth of waste: the economics of wastewater use in agriculture. Water Reports (35).Google Scholar
  41. Feichtinger, F., Smidt, S., & Klaghofer, E. (2002). Water and nitrate fluxes at a forest site in the North Tyrolean Limestone Alps. Environmental Science and Pollution Research, 9(2), 31.CrossRefGoogle Scholar
  42. Garbey, C., Murphy, K. J., Thiebaut, G., & Muller, S. (2004). Variation in phosphorus content in aquatic plant tissues offers an efficient tool for determining plant growth strategies along a resource gradient. Fresh Water Biology, 49, 1–11.CrossRefGoogle Scholar
  43. Garland, J. L., Mackowiak, C. L., & Zabaloy, M. C. (2010). Organic waste amendment effects on soil microbial activity in a corn–rye rotation: Application of a new approach to community-level physiological profiling. Applied Soil Ecology, 44(3), 262–269.CrossRefGoogle Scholar
  44. Ghosh, S. K. (2005). Illustrated aquatic and wetland plants in harmony with mankind (pp. 1–225). Kolkata: Standard Literature.Google Scholar
  45. Goher, M. E., Farhat, H. I., Abdo, M. H., & Salem, S. G. (2014). Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. The Egyptian Journal of Aquatic Research, 40(3), 213–224.CrossRefGoogle Scholar
  46. Gothberg, A., Greger, M., Holm, K., & Bengtsson, B. E. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. Journal of Environmental Quality, 33(4), 1247–1255.CrossRefGoogle Scholar
  47. Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., & Champagne, P. (2007). The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29(2), 154–163.CrossRefGoogle Scholar
  48. Grabas, G. P., Blukacz-Richards, E. A., & Pernanen, S. (2012). Development of a submerged aquatic vegetation community index of biotic integrity for use in Lake Ontario coastal wetlands. Journal of Great Lakes Research, 38(2), 243–250.CrossRefGoogle Scholar
  49. Greenacre, M., & Primicerio, R. (2013). Multivariate analysis of ecological data. Foundation BBVA.Google Scholar
  50. Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., & Tranvik, L. J. (2010). Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466(7305), l478–l481.CrossRefGoogle Scholar
  51. Guerra-Garcia, J. M., & Garcia-Gomez, J. C. (2005). Assessing pollution levels in sediments of a harbour with two opposing entrances. Environmental implications. Journal of Environmental Management, 77(1), 1–11.CrossRefGoogle Scholar
  52. Gunn, I. D., O’Hare, M., Carvalho, L., Roy, D. B., Rothery, P., & Darwell, A. M. (2010). Assessing the condition of lake habitats: A test of methods for surveying aquatic macrophyte communities. Hydrobiologia, 656(1), 87–97.CrossRefGoogle Scholar
  53. Gupta, A., Ronghang, M., Kumar, P., Mehrotra, I., Kumar, S., Grischek, T., & Knoeller, K. (2015). Nitrate contamination of riverbank filtrate at Srinagar, Uttarakhand, India: A case of geogenic mineralization. Journal of Hydrology, 531, 626–637.CrossRefGoogle Scholar
  54. Gupta, P. K. (2004). Soil, plant, water and fertilizer analysis. Bikaner: Agro Botanica, Vyas Nagar.Google Scholar
  55. Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1), 129–141.CrossRefGoogle Scholar
  56. Han, Y. M., Du, P. X., Cao, J. J., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.CrossRefGoogle Scholar
  57. Harguinteguy, C. A., Cirelli, A. F., & Pignata, M. L. (2014). Heavy metal accumulation in leaves of aquatic plant Stuckeniafiliformis and its relationship with sediment and water in the Suquíariver (Argentina). Microchemical Journal, 114, 111–118.CrossRefGoogle Scholar
  58. Hasler, C. T., Butman, D., Jeffrey, J. D., & Suski, C. D. (2016). Freshwater biota and rising pCO2? Ecology Letters, 19(1), 98–108.CrossRefGoogle Scholar
  59. Havens, K. E., Sharfstein, B., Brady, M. A., East, T. L., Harwell, M. C., Maki, R. P., & Rodusky, A. J. (2004). Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany, 78(1), 67–82.CrossRefGoogle Scholar
  60. Hayakawa, A., Ikeda, S., Tsushima, R., Ishikawa, Y., & Hidaka, S. (2015). Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena, 133, 486–494.CrossRefGoogle Scholar
  61. Heathcote, A. J., & Downing, J. A. (2012). Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape. Ecosystems, 15(1), 60–70.CrossRefGoogle Scholar
  62. Ibanez, S., Talano, M., Ontañon, O., Suman, J., Medina, M. I., Macek, T., & Agostini, E. (2016). Transgenic plants and hairy roots: Exploiting the potential of plant species to remediate contaminants. New Biotechnology, 33(5), 625–635.CrossRefGoogle Scholar
  63. Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185(1), 729–743.CrossRefGoogle Scholar
  64. Ismail, Z., Othman, S. Z., Law, K. H., Sulaiman, A. H., & Hashim, R. (2014). Comparative performance of water hyacinth ( Eichhorniacrassipes) and water lettuce (Pistastratiotes) in preventing nutrients build-up in municipal wastewater. CLEAN - Soil Air Water, 43(4), 521–531.CrossRefGoogle Scholar
  65. Jeelani, G., & Shah, A. Q. (2006). Geochemical characteristics of water and sediment from the dal Lake, Kashmir Himalaya: Constraints on weathering and anthropogenic activity. Environmental Geology, 50(1), 12–23.CrossRefGoogle Scholar
  66. Ji, Y., Zhang, J., Li, R., Pan, B., Zhang, L., & Chen, X. (2015). Distribution and partitioning of heavy metals in sediments of the Xinjiang River in Poyang Lake region, China. Environmental Progress and Sustainable Energy, 34(3), 713–723.Google Scholar
  67. Jing, L. D., Xi Wu, C., Tong Liu, J., Guang Wang, H., & Yi Ao, H. (2013). The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecological Engineering, 52, 167–174.Google Scholar
  68. Jing, L., Liu, X., Bai, S., Wu, C., Ao, H., & Liu, J. (2015). Effects of sediment dredging on internal phosphorus: A comparative field study focused on iron and phosphorus forms in sediments. Ecological Engineering, 82, 267–271.CrossRefGoogle Scholar
  69. Johnson, J. A., & Newman, R. M. (2011). A comparison of two methods for sampling biomass of aquatic plants. Journal of Aquatic Plant Management, 49(1), 1–8.Google Scholar
  70. Kalff, J. (2002). Limnology: Inland water ecosystems (Vol. 592). New Jersey: Prentice Hall.Google Scholar
  71. Karanlik, S., Agca, N., & Mehmet, Y. (2011). Spatial distribution of heavy metals content in soils of Amik Plain (Hatay, Turkey). Environmental Monitoring and Assessment, 173, 181–191.CrossRefGoogle Scholar
  72. Khan, F. A., & Ansari, A. A. (2005). Eutrophication: An ecological vision. The Botanical Review, 71(4), 449–482.CrossRefGoogle Scholar
  73. Kissoon, L. T., Jacob, D. L., Hanson, M. A., Herwig, B. R., Bowe, S. E., & Otte, M. L. (2013). Macrophytes in shallow lakes: Relationships with water, sediment and watershed characteristics. Aquatic Botany, 109, 39–48.CrossRefGoogle Scholar
  74. Knoll, L. B., Vanni, M. J., Renwick, W. H., & Kollie, S. (2014). Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs. Freshwater Biology, 59(11), 2342–2353.CrossRefGoogle Scholar
  75. Lake, P. S., Palmer, M. A., Biro, P., Cole, J., Covich, A. P., Dahm, C., & Verhoeven, J. O. S. (2000). Global change and the biodiversity of freshwater ecosystems: Impacts on linkages between above-sediment and sediment biota all forms of anthropogenic disturbance—Changes in land use, biogeochemical processes, or biotic addition or loss—Not only damage the biota of freshwater sediments but also disrupt the linkages between above-sediment and sediment-dwelling biota. Bioscience, 50(12), 1099–1107.CrossRefGoogle Scholar
  76. Lazzarino, J. K., Bachmann, R. W., Hoyer, M. V., & Canfield, D. E. (2009). Carbon dioxide supersaturation in Florida lakes. Hydrobiologia, 627(1), 169–180.CrossRefGoogle Scholar
  77. Lenzi, M., Gennaro, P., Renzi, M., Persia, E., & Porrello, S. (2012). Spread of Alsidiumcorallinum C. Ag. in a Tyrrhenian eutrophic lagoon dominated by opportunistic macroalgae. Marine Pollution Bulletin, 64(12), 2699–2707.CrossRefGoogle Scholar
  78. Lin, Y. F., Jing, S. R., Wang, T. W., & Lee, D. Y. (2002). Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollution, 119(3), 413–420.CrossRefGoogle Scholar
  79. Liu, J. L., Liu, J. K., Anderson, J. T., Zhang, R., & Zhang, Z. M. (2014). Potential of aquatic macrophytes and artificial floating island for removing contaminants. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 150(4), 702–709.CrossRefGoogle Scholar
  80. Lopes, M. L., Rodrigues, A. M., & Quintino, V. (2014). Ecological effects of contaminated sediments following a decade of no industrial effluents emissions: The sediment quality triad approach. Marine Pollution Bulletin, 87(1), 117–130.CrossRefGoogle Scholar
  81. Lukacs, B. A., Dévai, G. Y., & Tothmeresz, B. (2009). The function of macrophytes inrelation to environmental variables in eutrophic backwaters and mortlakes. Phytocoenologia, 39, 287–293.CrossRefGoogle Scholar
  82. Lukacs, B. A., Tothmeresz, B., Borics, G., Varbiróo, G., Juhasz, P., Kiss, B., & Eros, T. (2015). Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica-Ecology and Management of Inland Waters, 53, 74–83.CrossRefGoogle Scholar
  83. Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, 616–626.CrossRefGoogle Scholar
  84. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.CrossRefGoogle Scholar
  85. Macias, C. G., Schifter, I., Lluch-Cota, D. B., Mendez-Rodriguez, L., & NHernandez-Vazquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environmental Monitoring and Assessment, 118(1), 211–230.CrossRefGoogle Scholar
  86. Manap, N., & Voulvoulis, N. (2015). Environmental management for dredging sediments–the requirement of developing nations. Journal of Environmental Management, 147, 338–348.CrossRefGoogle Scholar
  87. Marberly, S. C. (1996). Diel, episodic and seasonal changes in pH and concentration of inorganic carbon in a productive lake. Freshwater Biology, 35, 579–598.CrossRefGoogle Scholar
  88. Markich, S. J., Brown, P. L., Batley, G. E., Apte, S. C., & Stauber, J. L. (2001). Incorporating metal speciation and bioavailability into water quality guidelines for protecting aquatic ecosystems. Australasian Journal of Ecotoxicology, 7(2), 109–122.Google Scholar
  89. Matusiewicz, H. (2003). Wet digestion methods (Vol. 41, pp. 193–233). Amsterdam: Elsevier.Google Scholar
  90. Mazej, Z., & Germ, M. (2009). Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere, 74(5), 642–647.CrossRefGoogle Scholar
  91. McElarney, Y., Rasmussen, P., Foy, R., & Anderson, N. (2010). Response of aquatic macrophytes in Northern Irish softwater lakes to forestry management; eutrophication and dissolved organic carbon. Aquatic Botany, 93(4), 227–236.CrossRefGoogle Scholar
  92. MEA (Millennium Ecosystem Assessment). (2005). Ecosystems and human Well-being: Current state and trends. Washington, DC: Island Press.Google Scholar
  93. Mediolla, L. L., Domingues, M. C. D., & Sandoval, M. R. G. (2008). Environmental assessment of and active tailings pile in the state of Mexico (Central Mexico). Research Journal of Environmental and Earth Sciences, 2, 197–208.Google Scholar
  94. Michard, G., Sarazin, G., Jezequel, D., Alberic, P., & Ogier, S. (2001). Annual budget of chemical elements in a eutrophic lake, Aydatlake (Puy-de-Dôme), France. Hydrobiologia, 459(1), 27–46.CrossRefGoogle Scholar
  95. Michelan, T. S., Thomaz, S., Mormul, R. P., & Carvalho, P. (2010). Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology, 55(6), 1315–1326.CrossRefGoogle Scholar
  96. Min, K., Kang, H., & Lee, D. (2011). Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biology and Biochemistry, 43(12), 2461–2469.CrossRefGoogle Scholar
  97. Moiseenko, T. I., Gashkina, N. A., & Dinu, M. I. (2016). Enrichment of surface water by elements: Effects of air pollution, acidification and eutrophication. Environmental Processes, 3(1), 39–58.CrossRefGoogle Scholar
  98. Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11(2), 328–336.CrossRefGoogle Scholar
  99. Morford, J. L., Emerson, S. R., Breckel, E. J., & Kim, S. H. (2005). Diagenesis of oxyanions (V, U, Re, and Mo) in porewaters and sediments from a continental margin. Geochimica et Cosmochimica Acta, 69, 502–5032.CrossRefGoogle Scholar
  100. Muller, B., Meyer, J. S., & Gachter, R. (2016). Alkalinity regulation in calcium carbonate-buffered lakes. Limnology and Oceanography, 61(1), 341–352.CrossRefGoogle Scholar
  101. Muller, G. (1979). Heavy metals in the sediments of the Rhine: Changes since 1971. Umschau, 79(24), 778–783.Google Scholar
  102. Muller, G. (1981). The heavy metal pollution of the sediments of the Neckar and its tributaries: An inventory. Chemical Zeitung, 105, 157–164.Google Scholar
  103. National Wetland Atlas: Jammu and Kashmir. (2010). SAC/RESA/AFEG/NWIA/ATLAS/16/2010, Space Applications Centre, ISRO, Ahmedabad, India, 176.Google Scholar
  104. Nilin, J., Moreira, L. B., Aguiar, J. E., Marins, R., de Souza Abessa, D. M., da Cruz Lotufo, T. M., & Costa-Lotufo, L. V. (2013). Sediment quality assessment in a tropical estuary: The case of Ceará River, Northeastern Brazil. Marine Environmental Research, 91, 89–96.CrossRefGoogle Scholar
  105. Njenga, J. W. (2004). Comparative studies of water chemistry of four tropical lakes in Kenya and India. Asian Journal of Water Environment and Pollution, 1(1–2), 87–97.Google Scholar
  106. Nnaji, C. C., & Agunwamba, J. C. (2014). Quality assessment of water receiving effluents from crude oil flow stations in Niger Delta, Nigeria. Water and Environment Journal, 28(1), 104–113.CrossRefGoogle Scholar
  107. Novak, P. A., & Chambers, J. M. (2014). Investigation of nutrient thresholds to guide restoration and management of two impounded rivers in South-Western Australia. Ecological Engineering, 68, 116–123.CrossRefGoogle Scholar
  108. Olsen, S., Jeppesen, E., Moss, B., Ozkan, K., Beklioglu, M., Feuchtmayr, H., & Sondergaard, M. (2014). Factors influencing nitrogen processing in lakes: An experimental approach. Freshwater Biology, 60(4), 646–662.CrossRefGoogle Scholar
  109. Ouma, H., & Mwamburi, J. (2014). Spatial variations in nutrients and other physicochemical variables in the topographically closed Lake Baringo freshwater basin (Kenya). Lakes and Reservoirs: Research and Management, 19(1), 11–23.CrossRefGoogle Scholar
  110. Pandit AK (2002) Topical evolution of lakes in Kashmir Himalaya. Natural resources of western Himalaya (pp. 213–242). Valley Book House, Srinagar.Google Scholar
  111. Pandit, A. K. (1999). Freshwater ecosystems of the Himalaya. New York/London: Parthenon Publishing.Google Scholar
  112. Paramasivam, K., Ramasamy, V., & Suresh, G. (2015). Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigairiver, Tamilnadu, India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 397–407.CrossRefGoogle Scholar
  113. Parker, J. L., & Bloom, N. S. (2005). Preservation and storage techniques for low-level aqueous mercury speciation. Science of the Total Environment, 337(1), 253–263.CrossRefGoogle Scholar
  114. Pulido, C., Lucassen, E. C., Pedersen, O. L. E., & Roelofs, J. G. (2011). Influence of quantity and lability of sediment organic matter on the biomass of two isoetids, Littorellauniflora and Echinodorusrepens. Freshwater Biology, 56(5), 939–951.CrossRefGoogle Scholar
  115. Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241.CrossRefGoogle Scholar
  116. Quilliam, R. S., Van Niekerk, M. A., Chadwick, D. R., Cross, P., Hanley, N., Jones, D. L., & Oliver, D. M. (2015). Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? Journal of Environmental Management, 152, 210–217.CrossRefGoogle Scholar
  117. Radojevic, M., & Bashkin, V. N. (2006). Practical environmental analysis (2nd Edn).The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0 WF, UK.Google Scholar
  118. Raj, S. M., & Jayaprakash, M. (2007). Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environmental Geology, 56(1), 207–217.CrossRefGoogle Scholar
  119. Rashid, I., Romshoo, S. A., Amin, M., Khanday, S. A., & Chauhan, P. (2016). Linking human-biophysical interactions with the trophic status of Dal Lake, Kashmir Himalaya, India. Limnologica-Ecology and Management of Inland Waters, 62, 84–96.CrossRefGoogle Scholar
  120. Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. Hoboken: Wiley.CrossRefGoogle Scholar
  121. Rothwell, J. J., Dise, N. B., Taylor, K. G., Allott, T. E. H., Scholefield, P., Davies, H., & Neal, C. (2010). A spatial and seasonal assessment of river water chemistry across North West England. Science of the Total Environment, 408(4), 841–855.CrossRefGoogle Scholar
  122. Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and plant analysis laboratory manual. Aleppo: International Center for Agricultural Research in the Dry Areas (ICARDA).Google Scholar
  123. Sadasivam, S., & Manikam, A. (2005). Biochemical methods (2nd ed.). New Delhi: New Age International.Google Scholar
  124. Sany, S. B. T., Hashim, R., Rezayi, M., Salleh, A., & Safari, O. (2014). A review of strategies to monitor water and sediment quality for a sustainability assessment of marine environment. Environmental Science and Pollution Research, 21(2), 813–833.CrossRefGoogle Scholar
  125. Sarwar, N., Saifullah Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925–937.Google Scholar
  126. Sass, L. L., Bozek, M. A., Hauxwell, J. A., Wagner, K., & Knight, S. (2010). Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, USA. Aquatic Botany, 93(1), 1–8.CrossRefGoogle Scholar
  127. Schaller, J., Vymazal, J., & Brackhage, C. (2013). Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: A review. Ecological Engineering, 53, 106–114.CrossRefGoogle Scholar
  128. Scheffer, M. (1989). Alternative stable states in eutrophic, shallow freshwater systems: A minimal model. Hydrobiological Bulletin, 23(1), 73–83.CrossRefGoogle Scholar
  129. Schneider, B., Cunha, E. R., Marchese, M., & Thomaz, S. M. (2015). Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain. Aquatic Botany, 121, 67–75.CrossRefGoogle Scholar
  130. Selig, U., & Schlungbaum, G. (2003). Characterisation and quantification of phosphorus release from profundal bottom sediments in two dimictic lakes during summer stratification. Journal of Limnology, 62(2), 151–162.CrossRefGoogle Scholar
  131. Shaltout, K. H., Galal, T. M., & El-Komi, T. M. (2014). Biomass, nutrients and nutritive value of PersicariasalicifoliaWilld in the water courses of Nile Delta, Egypt. RendicontiLincei, 25(2), 167–179.Google Scholar
  132. Sierszen, M. E., Morrice, J. A., Trebitz, A. S., & Hoffman, J. C. (2012). A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management, 15(1), 92–106.CrossRefGoogle Scholar
  133. Singh, S. P., & Singh, B. P. (2010). Geothermal evolution of the evaporite-bearing sequences of the Lesser Himalaya, India. International Journal of Earth Sciences, 99(1), 101–108.CrossRefGoogle Scholar
  134. Sistla, S. A., Appling, A. P., Lewandowska, A. M., Taylor, B. N., & Wolf, A. A. (2015). Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124(7), 949–959.CrossRefGoogle Scholar
  135. Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van der Velde, G., & Roelofs, J. G. M. (2006). Internal eutrophication: How it works and what to do about it—A review. Chemistry and Ecology, 22(2), 93–111.CrossRefGoogle Scholar
  136. Sondergaard, M., Johansson, L. S., Lauridsen, T. L., Jorgensen, T. B., Liboriussen, L., & Jeppesen, E. (2010). Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology, 55(4), 893–908.CrossRefGoogle Scholar
  137. Sondergaard, M., Phillips, G., Hellsten, S., Kolada, A., Ecke, F., Mäemets, H., & Oggioni, A. (2013). Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia, 704(1), 165–177.CrossRefGoogle Scholar
  138. Srebotnjak, T., Carr, G., de Sherbinin, A., & Rickwood, C. (2012). A global water quality index and hot-deck imputation of missing data. Ecological Indicators, 17, 108–119.CrossRefGoogle Scholar
  139. Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.CrossRefGoogle Scholar
  140. Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: Treatment and reuse. New York: Metcalf & Eddy Inc, McGraw Hill.Google Scholar
  141. Thompson, J. B., Schultze-Lam, S., Beveridge, T. J., & Des Marais, D. J. (1997). Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1), 133–141.CrossRefGoogle Scholar
  142. Tian, D. L., Xiang, W. H., Yan, W. D., Kang, W. X., Deng, X. W., & Fan, Z. (2007). Biological cycles of mineral elements in a young mixed stand in abandoned mining soils. Journal of Integrative Plant Biology, 49(9), 1284–1293.CrossRefGoogle Scholar
  143. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., & Kortelainen, P. L. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6–2), 2298–2314.CrossRefGoogle Scholar
  144. Turner, A., Millward, G. E., & Le Roux, S. M. (2004). Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 88(3), 179–192.CrossRefGoogle Scholar
  145. U. S. Environmental Protection Agency. (1994). Method 2007: Determination of Metals and Trace Elements in Water and Wastes By Inductively Coupled Plasma – Atomic Emission Spectrometry, Revision 4.4, EMMC.Google Scholar
  146. Udeigwe, T. K., Teboh, J. M., Eze, P. N., HashemStietiya, M., Kumar, V., Hendrix, J., & Kandakji, T. (2015). Implications of leading crop production practices on environmental quality and human health. Journal of Environmental Management, 151, 267–279.CrossRefGoogle Scholar
  147. UNEP. (2007). Global Environment Outlook 4 (GEO-4): environment for development. United Nations Environment Programme, Nairobi, Kenya.Google Scholar
  148. Urban, N. R., Brezonik, P. L., Baker, L. A., & Sherman, L. A. (2009). Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnology and Oceanography, 39(4), 797–815.CrossRefGoogle Scholar
  149. USEPA. (2014). The assessment and TMDL tracking and implementation system. National Summary of State Information.
  150. Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.CrossRefGoogle Scholar
  151. Wagner, B., Lotter, A. F., Nowaczyk, N., Reed, J. M., Schwalb, A., Sulpizio, R., & Zanchetta, G. (2009). A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). Journal of Paleolimnology, 41(3), 407–430.CrossRefGoogle Scholar
  152. Wali, A., Kawachi, A., Bougi, M. S. M., Dhia, H. B., Isoda, H., Tsujimura, M., & Ksibi, M. (2015). Effects of metal pollution on sediments in a highly saline aquatic ecosystem: Case of the Moknine Continental Sebkha (Eastern Tunisia). Bulletin of Environmental Contamination and Toxicology, 94(4), 511–518.CrossRefGoogle Scholar
  153. Wang, C. Y., Sample, D. J., Day, S. D., & Grizzard, T. J. (2015). Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecological Engineering, 78, 15–26.CrossRefGoogle Scholar
  154. Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107.CrossRefGoogle Scholar
  155. Wersal, R. M., & Madsen, J. D. (2011). Influences of water column nutrient loading on growth characteristics of the invasive aquatic macrophyte Myriophyllum aquaticum (Vell.)Verdc. Hydrobiologia, 665(1), 93–105.CrossRefGoogle Scholar
  156. Wetzel RG (2001) Land–water interfaces: Larger plants. Limnology, 3rd Edn., Academic Press, San Diego.Google Scholar
  157. Wiik, E., Bennion, H., Sayer, C. D., Davidson, T. A., McGowan, S., Patmore, I. R., & Clarke, S. J. (2015). Ecological sensitivity of marl lakes to nutrient enrichment: Evidence from Hawes water, UK. Freshwater Biology, 60(11), 2226–2247.CrossRefGoogle Scholar
  158. Wood, K. A., Stillman, R. A., Clarke, R. T., Daunt, F., & O’Hare, M. T. (2012). Understanding plant community responses to combinations of biotic and abiotic factors in different phases of the plant growth cycle. PLoS One, 7(11), 49824.CrossRefGoogle Scholar
  159. Wright, J. F., Sutcliffe, D. W., & Furse, M. T. (2000). Assessing the biological quality of fresh waters: RIVPACS and other techniques. In Assessing the biological quality of fresh waters: RIVPACS and other techniques. Freshwater Biological Association.Google Scholar
  160. Xiangcan, J. (2003). Analysis of eutrophication state and trend for lakes in China. Journal of Limnology, 62(1s), 60–66.CrossRefGoogle Scholar
  161. Xu, Y., Xie, R., Wang, Y., & Sha, J. (2014). Spatio-temporal variations of water quality in Yuqiao Reservoir Basin, North China. Frontiers of Environmental Science & Engineering, 9(4), 649–664.CrossRefGoogle Scholar
  162. Yu, S., Yu, G. B., Liu, Y., Li, G. L., Feng, S., Wu, S. C., & Wong, M. H. (2012). Urbanization impairs surface water quality: Eutrophication and metal stress in the Grand Canal of China. River Research and Applications, 28(8), 1135–1148.CrossRefGoogle Scholar
  163. Yuan, Z., Taoran, S., Yan, Z., & Tao, Y. (2014). Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China. Environmental Monitoring and Assessment, 186(2), 1219–1234.CrossRefGoogle Scholar
  164. Zaier, H., Ghnaya, T., Rejeb, K. B., Lakhdar, A., Rejeb, S., & Jemal, F. (2010). Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresource Technology, 101(11), 3978–3983.CrossRefGoogle Scholar
  165. Zargar, U. R., Chishti, M. Z., Yousuf, A. R., & Fayaz, A. (2012). Infection level of monogenean gill parasite, Diplozoonkashmirensis (Monogenea, Polyopisthocotylea) in the Crucian Carp, Carassiuscarassius from lake ecosystems of an altered water quality: What factors do have an impact on the Diplozoon infection? Veterinary Parasitology, 189(2), 218–226.CrossRefGoogle Scholar
  166. Zhang, C., Qiao, Q., Piper, J. D., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159(10), 3057–3070.CrossRefGoogle Scholar
  167. Zhang, F., Yan, X., Zeng, C., Zhang, M., Shrestha, S., Devkota, L. P., & Yao, T. (2012). Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. International Journal of Environmental Research and Public Health, 9, 1715–1731.CrossRefGoogle Scholar
  168. Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecological Engineering, 83, 268–275.CrossRefGoogle Scholar
  169. Zhu, X., Ji, H., Chen, Y., Qiao, M., & Tang, L. (2013). Assessment and sources of heavy metals in surface sediments of Miyun Reservoir, Beijing. Environmental Monitoring and Assessment, 185(7), 6049–6062.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Umar Nazir Bhat
    • 1
  • Anisa Basheer Khan
    • 1
  1. 1.Department of Ecology and Environmental SciencesPondicherry Central UniversityPuducherryIndia

Personalised recommendations