Fresh Water Pollution Dynamics and Remediation pp 197-234 | Cite as
Analysis of Hydrology, Sediment Retention, Biogenic- Calcification and -Scavenging as Self-Remediative Lacustrine Functions.
- 333 Downloads
Abstract
Urban water bodies are indicators of anthropogenic intrusion surfacing mutability in intrinsic homeostasis. Ecological assessment of various bio-physicochemical variables at periodic intervals is vital for eventual implementation of management and conservation practices in lakes. An inter-annual monitoring of surface-waters, surface-sediments and dominant macrophytes for standard variables at 50 sampling sites in 5 zones (10 each) of Anchar and Dal lakes is carried out to assess their spatio-temporal heterogeneity under human pressures. Temperature, pH, conductivity and ionic composition of the epilimnion show p < 0.01 and R2 > 0.5. The trophic range for total-P exceeds critical eutrophic index (≤ 0.05 mgL−1) but nitrate-N persists beneath it (≤ 0.5 mgL−1) normally. Conductivity maintains superior solute richness though autotrophic assimilation and biocalcification episodes subsidize it towards summer. The anionic predominance of HCO3-(BIC) and Cl− exist alongside cationic progression of Ca > Mg > Na > K. Lime-catchment adds to Ca ascendancy and hard-waters. Agricultural runoff links with K while Cl to faunal organic pollution. Superior nitrate concentration is accumulative of human actions (agriculture, farming, sewage, factories, etc.), spring fed lake-basin, preferential NH4+ autotrophic assimilation, geogenic N-pockets and forest surface runoff. Significant Coefficient of Determination (R2) for pH versus temperature, conductivity versus pH and temperature substantiate biological uptake and calcite co-precipitation. An equation with average worldwide stream abundance (mgL-1) of recorded Ca (> 15), Mg (> 4), K (> 2.3) and Na (> 6.3) besides observed average epilimnion trace element concentration (μgL−1) for As (> 2), Cd (> 1), Cr (> 1), Co (> 0.2), Cu (> 10), Fe (> 700), Pb (> 3), Mn (> 7), Ni (> 1), Se (> 0.2), Sn (> 0.1) and Zn (> 20) acclaim their anthropogenic origins. However, all priority pollutants (As, Cd, Cr, Cu, Pb, Ni and Se) continued below USEPA chronic levels. Fe and Zn exceed maximum permissible limits for irrigation. The flushing-out of harmful nutrient- and contaminant-levels due to semi-drainage hydrology recuperated the aqueous volume. Sediment assessment identifies Ca-Si domination with temporal gradients in pH, bicarbonate, conductivity, Organic Carbon (OC), Organic Matter (OM), Total Nitrogen (TN) and C/N. Almost no outliers in box-plots across the select sites suggest their tranquil nature. Element composition revealed the order of Si ˃ Ca ˃ Mg ˃ K ˃ Na ˃ P ˃ S ˃ Cl. Micro and trace element quantification denote the descending series of Fe ˃ Al ˃ Zn > Mn > Cu > Cr > Ni > Co > As > Sn > Pb > Cd while Hg and Se remained Below Detection Level (BDL). Sediment pH stayed on the basic side but slender acidic nature is noticed during late summer. Significant correlation for conductivity with OC and OM (p < 0.01) establish the latter a source for nutrient ions. Total-N is complementary to OC and OM of sediments too. Active/Passive-bioaccumulation or anoxic release from sediments tends to slight gradual decline in nutrient concentration till culmination of macrophytic growth phases. Enrichment Factor (EF), Geo-accumulation Index (Igeo) and Contamination Factor (CF) expound the contaminants to be largely anthropogenic. Integrated Pollution Index (IPI) and Pollution Load Index (PLI) catalog the lakes to have moderate metal contamination. Sediment Quality Guidelines (SQG’s) point to pollution status and associated ecological risks involved. Cr, Ni and Zn exceed SQG’s but Cd and Pb don’t transcend them. As is below Effects Range Low (ERL) and Cu lags in Probable Effect Concentration (PEC). The typical C/N < 10 infers autochthonous sediment OM with low decomposition rates. Upgraded [N]:[P] ratios parallel chronic nitrogen influx. Higher temperature and lower [N]:[P] ratio during summer develop internal loading of P. But higher Al, Ca and Fe proportions in sediments inactivate P mobilization. Curbing of external N and P loads is effective in remediation but the internal supplement compensates the loss. OM or Fe/Mn- oxide decomposition and reductive dissolution respectively separate bound trace-metals near hypolimnion-sediment overlap. Lower [Ca]:[Al] sponsor exsitu human Potentially Toxic Element (PTE) transport. Nonetheless, OM enriched sediments and calcite co-precipitation together curtails PTE mobility. Macrophytes optimize ambient water quality and sediment medium. The peak biomass (gm-2) values on dry weight basis are 880.2, 678.4, 182.4 and 45 for Myriophyllum aquaticum, Nelumbo nucifera, Ceratophyllum demersum and Salvinia natans respectively. Dry Weight, Productivity, Net Primary Productivity (NPP) and Specific Growth Rate institute affiliated variations but species Turn-Over is highest in case of S. natans and lowest for C. demersum. The species differ in tissue nutrient and trace element concentrations but correlate with ambient water-sediment medium. The peak nutrient uptake and bioconcentration coincide with peak biomass in summer and autumn. Bioconcentration Factor (BCF) indicates hyperaccumulation for most of the metals in case of C. demersum and S. natans. Removal Potential for different elements is divergent but the pattern is related which suggests unselective absorption. Turn-over Rates for elements closer to the reference value of 1 is significant. Bioavailability of nutrients and toxins becomes fractional conjointly by flushing hydrology, biological scavenging and biocalcification. An insitu self-reclaimed nutrient balance and eco-restoration is conceivable in the region of anthro-urban intensification by limiting human perturbations, practicing periodic dredging, sediment trapping, scaled-cum-selective deweeding and construction of vegetation buffer strips.
Keywords
Assimilation Bicarbonates Conductivity Contamination Nutrients Resilience SpectrometerNotes
Acknowledgements
The authors would like to express sincere appreciation to Quality Control cum Leaf Tissue Analysis Lab, Sheri Kashmir Agricultural University of Science and Technology (SKAUST), Srinagar-191121; Central Instrumentation Facility (CIF), Pondicherry University- 605014 and Indian Institute of Technology and Management (IITM), Chennai- 600036 for their helpful attitude in facilitating lab and instrumentation services.
References
- Abell, J. M., Ozkundakci, D., & Hamilton, D. P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control. Ecosystems, 13(7), 966–977.CrossRefGoogle Scholar
- Abubakr, A., & Kundangar, M. R. D. (2009). Three decades of Dal lake pollution. Restoration, Ecology, Environment and Conservation, 15(4), 825–833.Google Scholar
- Akin, B. S., Atıcı, T., Katircioglu, H., & Keskin, F. (2010). Investigation of water quality on Gokçekayadam lake using multivariate statistical analysis, in Eskişehir, Turkey. Environmental Earth Sciences, 63(6), 1251–1261.CrossRefGoogle Scholar
- Algesten, G., Sobek, S., Bergstrom, A. K., Agren, A., Tranvik, L. J., & Jansson, M. (2003). Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 10(1), 141–147.CrossRefGoogle Scholar
- Allan, I., Vrana, B., Greenwood, R., Mills, G., Knutsson, J., Holmberg, A., & Guigues, N. (2006). Strategic monitoring for the European water framework directive. Trends in Analytical Chemistry, 25(7), 704–715.CrossRefGoogle Scholar
- Allison, S. D., Czimczik, C. I., & Treseder, K. K. (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14(5), 1156–1168.CrossRefGoogle Scholar
- Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). London: Blackie Academic and Professional.CrossRefGoogle Scholar
- Amari, T., Ghnaya, T., Debez, A., Taamali, M., Youssef, N. B., Lucchini, G., & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemumcrystallinum (halophyte) and Brassica juncea: Metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171(17), 1634–1644.CrossRefGoogle Scholar
- Ammar, R., Kazpard, V., Wazne, M., El Samrani, A. G., Amacha, N., Saad, Z., & Chou, L. (2015). Reservoir sediments: A sink or source of chemicals at the surface water-groundwater interface. Environmental Monitoring and Assessment, 187(9), 579.CrossRefGoogle Scholar
- ANZECC/ARMCANZ. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra 1–103.Google Scholar
- APHA. (2005). APHA, AWWA, & WEF. Standard methods for the examination of water and wastewater, 21st edn., Washington, DC.Google Scholar
- Arshid, S., Wani, A. A., Ganie, A. H., & Khuroo, A. A. (2011). On correct identification, range expansion and management implications of Myriophyllum aquaticum in Kashmir Himalaya, India. Check List, 7(3), 299–302.CrossRefGoogle Scholar
- Badar, B., Romshoo, S. A., & Khan, M. A. (2012). Integrating biophysical and socioeconomic information for prioritizing watersheds in a Kashmir Himalayan lake: A remote sensing and GIS approach. Environmental Monitoring and Assessment, 185(8), 6419–6445.CrossRefGoogle Scholar
- Bastami, K. D., Neyestani, M. R., Shemirani, F., Soltani, F., Haghparast, S., & Akbari, A. (2015). Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Marine Pollution Bulletin, 92(1), 237–243.CrossRefGoogle Scholar
- Batley, G. E. (2000). Implications of the new ANZECC/ARMCANZ water quality guidelines for mining companies. In: Grundon, NJ & Bell, LC. In Proceedings of the Fourth Australian Workshop on Acid Mine Drainage 221–229.Google Scholar
- Beck, M. W., Tomcko, C. M., Valley, R. D., & Staples, D. F. (2014). Analysis of macrophyte indicator variation as a function of sampling, temporal, and stressor effects. Ecological Indicators, 46, 323–335.CrossRefGoogle Scholar
- Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29(6), 2073–2089.CrossRefGoogle Scholar
- BerzasNevado, J. J., Rodriguez Martín-Doimeadios, R. C., Guzman Bernardo, F. J., Jimenez Moreno, M., Ortega Tardio, S., Sánchez-Herrera Fornieles, M. M., & Doncel Perez, A. (2009). Integrated pollution evaluation of the Tagus River in Central Spain. Environmental Monitoring and Assessment, 156(1), 461–477.CrossRefGoogle Scholar
- Bierman, P., Lewis, M., Ostendorf, B., & Tanner, J. (2009). A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecological Indicators, 11(1), 103–114.CrossRefGoogle Scholar
- Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73(1), 1–14.CrossRefGoogle Scholar
- Boyd, C. E., Tucker, C. S., & Somridhivej, B. (2016). Alkalinity and hardness: Critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 47(1), 6–41.CrossRefGoogle Scholar
- Bu, H., Meng, W., Zhang, Y., & Wan, J. (2014). Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators, 41, 187–197.CrossRefGoogle Scholar
- Bunn, S. E., & Davies, P. M. (2000). Biological processes in running waters and their implications for the assessment of ecological integrity. In Assessing the ecological integrity of running waters (pp. 61–70). Dordrecht: Springer.CrossRefGoogle Scholar
- Canavan, R. W., Slomp, C. P., Jourabchi, P., Van Cappellen, P., Laverman, A. M., & Van den Berg, G. A. (2006). Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimicaet Cosmochimica Acta, 70(11), 2836–2855.CrossRefGoogle Scholar
- Chambers, P. A., Lacoul, P., Murphy, K. J., & Thomaz, S. M. (2008). Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595(1), 9–26.CrossRefGoogle Scholar
- Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589–600.CrossRefGoogle Scholar
- Choi, K. Y., Kim, S. H., Hong, G. H., & Chon, H. T. (2012). Distributions of heavy metals in the sediments of south Korean harbors. Environmental Geochemistry and Health, 34(1), 71–82.CrossRefGoogle Scholar
- Chon, H. S., Ohandja, D. G., & Voulvoulis, N. (2012). The role of sediments as a source of metals in river catchments. Chemosphere, 88(10), 1250–1256.CrossRefGoogle Scholar
- Cook, C. D. (1996). Aquatic and wetland plants of India: A reference book and identification manual for the vascular plants found in permanent or seasonal fresh water in the subcontinent of India south of the Himalayas (Vol. 198548214, pp. 1–385). Oxford: Oxford University Press.Google Scholar
- Cotner, J. B., Kenning, J., & Scott, J. T. (2009). The microbial role in littoral zone biogeochemical processes: Why Wetzel was right. Verhandlungen des Internationalen Verein Limnologie, 30, 981–984.Google Scholar
- De Jonge, V. N., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia, 475(1), 1–19.CrossRefGoogle Scholar
- De Vicente, I., Guerrero, F., & Cruz-Pizarro, L. (2010). Chemical composition of wetland sediments as an integrator of trophic state. Aquatic Ecosystem Health and Management, 13(1), 99–103.CrossRefGoogle Scholar
- Dean, J. R., Eastwood, W. J., Roberts, N., Jones, M. D., Yigitbaşıoglu, H., Allcock, S. L., & Leng, M. J. (2015). Tracking the hydro-climatic signal from lake to sediment: A field study from Central Turkey. Journal of Hydrology, 529, 608–621.CrossRefGoogle Scholar
- Dhote, S. (2007). Role of Macrophytes in improving water quality of an aquatic eco-system. Journal of Applied Sciences and Environmental Management, 11(4), 133–135.Google Scholar
- Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., & Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 22(1), 1–10.CrossRefGoogle Scholar
- EEA. (2012). European waters – Assessment of status and pressures. Copenhagen: European Environment Agency.Google Scholar
- El-Otify, A. M. (2015). Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt. Journal of Basic and Applied Sciences, 4(4), 327–337.Google Scholar
- Elser, J. J., Andersen, T., Baron, J. S., Bergstrom, A. K., Jansson, M., Kyle, M., & Hessen, D. O. (2009). Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954), 835–837.CrossRefGoogle Scholar
- Estefan, G., Sommer, R., Ryan, J. (2013). Methods of soil, plant and water analysis. International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon.Google Scholar
- FAO (Food and agriculture organization) (2010) The wealth of waste: the economics of wastewater use in agriculture. Water Reports (35).Google Scholar
- Feichtinger, F., Smidt, S., & Klaghofer, E. (2002). Water and nitrate fluxes at a forest site in the North Tyrolean Limestone Alps. Environmental Science and Pollution Research, 9(2), 31.CrossRefGoogle Scholar
- Garbey, C., Murphy, K. J., Thiebaut, G., & Muller, S. (2004). Variation in phosphorus content in aquatic plant tissues offers an efficient tool for determining plant growth strategies along a resource gradient. Fresh Water Biology, 49, 1–11.CrossRefGoogle Scholar
- Garland, J. L., Mackowiak, C. L., & Zabaloy, M. C. (2010). Organic waste amendment effects on soil microbial activity in a corn–rye rotation: Application of a new approach to community-level physiological profiling. Applied Soil Ecology, 44(3), 262–269.CrossRefGoogle Scholar
- Ghosh, S. K. (2005). Illustrated aquatic and wetland plants in harmony with mankind (pp. 1–225). Kolkata: Standard Literature.Google Scholar
- Goher, M. E., Farhat, H. I., Abdo, M. H., & Salem, S. G. (2014). Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. The Egyptian Journal of Aquatic Research, 40(3), 213–224.CrossRefGoogle Scholar
- Gothberg, A., Greger, M., Holm, K., & Bengtsson, B. E. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. Journal of Environmental Quality, 33(4), 1247–1255.CrossRefGoogle Scholar
- Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., & Champagne, P. (2007). The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29(2), 154–163.CrossRefGoogle Scholar
- Grabas, G. P., Blukacz-Richards, E. A., & Pernanen, S. (2012). Development of a submerged aquatic vegetation community index of biotic integrity for use in Lake Ontario coastal wetlands. Journal of Great Lakes Research, 38(2), 243–250.CrossRefGoogle Scholar
- Greenacre, M., & Primicerio, R. (2013). Multivariate analysis of ecological data. Foundation BBVA.Google Scholar
- Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., & Tranvik, L. J. (2010). Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466(7305), l478–l481.CrossRefGoogle Scholar
- Guerra-Garcia, J. M., & Garcia-Gomez, J. C. (2005). Assessing pollution levels in sediments of a harbour with two opposing entrances. Environmental implications. Journal of Environmental Management, 77(1), 1–11.CrossRefGoogle Scholar
- Gunn, I. D., O’Hare, M., Carvalho, L., Roy, D. B., Rothery, P., & Darwell, A. M. (2010). Assessing the condition of lake habitats: A test of methods for surveying aquatic macrophyte communities. Hydrobiologia, 656(1), 87–97.CrossRefGoogle Scholar
- Gupta, A., Ronghang, M., Kumar, P., Mehrotra, I., Kumar, S., Grischek, T., & Knoeller, K. (2015). Nitrate contamination of riverbank filtrate at Srinagar, Uttarakhand, India: A case of geogenic mineralization. Journal of Hydrology, 531, 626–637.CrossRefGoogle Scholar
- Gupta, P. K. (2004). Soil, plant, water and fertilizer analysis. Bikaner: Agro Botanica, Vyas Nagar.Google Scholar
- Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1), 129–141.CrossRefGoogle Scholar
- Han, Y. M., Du, P. X., Cao, J. J., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.CrossRefGoogle Scholar
- Harguinteguy, C. A., Cirelli, A. F., & Pignata, M. L. (2014). Heavy metal accumulation in leaves of aquatic plant Stuckeniafiliformis and its relationship with sediment and water in the Suquíariver (Argentina). Microchemical Journal, 114, 111–118.CrossRefGoogle Scholar
- Hasler, C. T., Butman, D., Jeffrey, J. D., & Suski, C. D. (2016). Freshwater biota and rising pCO2? Ecology Letters, 19(1), 98–108.CrossRefGoogle Scholar
- Havens, K. E., Sharfstein, B., Brady, M. A., East, T. L., Harwell, M. C., Maki, R. P., & Rodusky, A. J. (2004). Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany, 78(1), 67–82.CrossRefGoogle Scholar
- Hayakawa, A., Ikeda, S., Tsushima, R., Ishikawa, Y., & Hidaka, S. (2015). Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena, 133, 486–494.CrossRefGoogle Scholar
- Heathcote, A. J., & Downing, J. A. (2012). Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape. Ecosystems, 15(1), 60–70.CrossRefGoogle Scholar
- Ibanez, S., Talano, M., Ontañon, O., Suman, J., Medina, M. I., Macek, T., & Agostini, E. (2016). Transgenic plants and hairy roots: Exploiting the potential of plant species to remediate contaminants. New Biotechnology, 33(5), 625–635.CrossRefGoogle Scholar
- Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185(1), 729–743.CrossRefGoogle Scholar
- Ismail, Z., Othman, S. Z., Law, K. H., Sulaiman, A. H., & Hashim, R. (2014). Comparative performance of water hyacinth ( Eichhorniacrassipes) and water lettuce (Pistastratiotes) in preventing nutrients build-up in municipal wastewater. CLEAN - Soil Air Water, 43(4), 521–531.CrossRefGoogle Scholar
- Jeelani, G., & Shah, A. Q. (2006). Geochemical characteristics of water and sediment from the dal Lake, Kashmir Himalaya: Constraints on weathering and anthropogenic activity. Environmental Geology, 50(1), 12–23.CrossRefGoogle Scholar
- Ji, Y., Zhang, J., Li, R., Pan, B., Zhang, L., & Chen, X. (2015). Distribution and partitioning of heavy metals in sediments of the Xinjiang River in Poyang Lake region, China. Environmental Progress and Sustainable Energy, 34(3), 713–723.Google Scholar
- Jing, L. D., Xi Wu, C., Tong Liu, J., Guang Wang, H., & Yi Ao, H. (2013). The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecological Engineering, 52, 167–174.Google Scholar
- Jing, L., Liu, X., Bai, S., Wu, C., Ao, H., & Liu, J. (2015). Effects of sediment dredging on internal phosphorus: A comparative field study focused on iron and phosphorus forms in sediments. Ecological Engineering, 82, 267–271.CrossRefGoogle Scholar
- Johnson, J. A., & Newman, R. M. (2011). A comparison of two methods for sampling biomass of aquatic plants. Journal of Aquatic Plant Management, 49(1), 1–8.Google Scholar
- Kalff, J. (2002). Limnology: Inland water ecosystems (Vol. 592). New Jersey: Prentice Hall.Google Scholar
- Karanlik, S., Agca, N., & Mehmet, Y. (2011). Spatial distribution of heavy metals content in soils of Amik Plain (Hatay, Turkey). Environmental Monitoring and Assessment, 173, 181–191.CrossRefGoogle Scholar
- Khan, F. A., & Ansari, A. A. (2005). Eutrophication: An ecological vision. The Botanical Review, 71(4), 449–482.CrossRefGoogle Scholar
- Kissoon, L. T., Jacob, D. L., Hanson, M. A., Herwig, B. R., Bowe, S. E., & Otte, M. L. (2013). Macrophytes in shallow lakes: Relationships with water, sediment and watershed characteristics. Aquatic Botany, 109, 39–48.CrossRefGoogle Scholar
- Knoll, L. B., Vanni, M. J., Renwick, W. H., & Kollie, S. (2014). Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs. Freshwater Biology, 59(11), 2342–2353.CrossRefGoogle Scholar
- Lake, P. S., Palmer, M. A., Biro, P., Cole, J., Covich, A. P., Dahm, C., & Verhoeven, J. O. S. (2000). Global change and the biodiversity of freshwater ecosystems: Impacts on linkages between above-sediment and sediment biota all forms of anthropogenic disturbance—Changes in land use, biogeochemical processes, or biotic addition or loss—Not only damage the biota of freshwater sediments but also disrupt the linkages between above-sediment and sediment-dwelling biota. Bioscience, 50(12), 1099–1107.CrossRefGoogle Scholar
- Lazzarino, J. K., Bachmann, R. W., Hoyer, M. V., & Canfield, D. E. (2009). Carbon dioxide supersaturation in Florida lakes. Hydrobiologia, 627(1), 169–180.CrossRefGoogle Scholar
- Lenzi, M., Gennaro, P., Renzi, M., Persia, E., & Porrello, S. (2012). Spread of Alsidiumcorallinum C. Ag. in a Tyrrhenian eutrophic lagoon dominated by opportunistic macroalgae. Marine Pollution Bulletin, 64(12), 2699–2707.CrossRefGoogle Scholar
- Lin, Y. F., Jing, S. R., Wang, T. W., & Lee, D. Y. (2002). Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollution, 119(3), 413–420.CrossRefGoogle Scholar
- Liu, J. L., Liu, J. K., Anderson, J. T., Zhang, R., & Zhang, Z. M. (2014). Potential of aquatic macrophytes and artificial floating island for removing contaminants. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 150(4), 702–709.CrossRefGoogle Scholar
- Lopes, M. L., Rodrigues, A. M., & Quintino, V. (2014). Ecological effects of contaminated sediments following a decade of no industrial effluents emissions: The sediment quality triad approach. Marine Pollution Bulletin, 87(1), 117–130.CrossRefGoogle Scholar
- Lukacs, B. A., Dévai, G. Y., & Tothmeresz, B. (2009). The function of macrophytes inrelation to environmental variables in eutrophic backwaters and mortlakes. Phytocoenologia, 39, 287–293.CrossRefGoogle Scholar
- Lukacs, B. A., Tothmeresz, B., Borics, G., Varbiróo, G., Juhasz, P., Kiss, B., & Eros, T. (2015). Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica-Ecology and Management of Inland Waters, 53, 74–83.CrossRefGoogle Scholar
- Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, 616–626.CrossRefGoogle Scholar
- MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.CrossRefGoogle Scholar
- Macias, C. G., Schifter, I., Lluch-Cota, D. B., Mendez-Rodriguez, L., & NHernandez-Vazquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environmental Monitoring and Assessment, 118(1), 211–230.CrossRefGoogle Scholar
- Manap, N., & Voulvoulis, N. (2015). Environmental management for dredging sediments–the requirement of developing nations. Journal of Environmental Management, 147, 338–348.CrossRefGoogle Scholar
- Marberly, S. C. (1996). Diel, episodic and seasonal changes in pH and concentration of inorganic carbon in a productive lake. Freshwater Biology, 35, 579–598.CrossRefGoogle Scholar
- Markich, S. J., Brown, P. L., Batley, G. E., Apte, S. C., & Stauber, J. L. (2001). Incorporating metal speciation and bioavailability into water quality guidelines for protecting aquatic ecosystems. Australasian Journal of Ecotoxicology, 7(2), 109–122.Google Scholar
- Matusiewicz, H. (2003). Wet digestion methods (Vol. 41, pp. 193–233). Amsterdam: Elsevier.Google Scholar
- Mazej, Z., & Germ, M. (2009). Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere, 74(5), 642–647.CrossRefGoogle Scholar
- McElarney, Y., Rasmussen, P., Foy, R., & Anderson, N. (2010). Response of aquatic macrophytes in Northern Irish softwater lakes to forestry management; eutrophication and dissolved organic carbon. Aquatic Botany, 93(4), 227–236.CrossRefGoogle Scholar
- MEA (Millennium Ecosystem Assessment). (2005). Ecosystems and human Well-being: Current state and trends. Washington, DC: Island Press.Google Scholar
- Mediolla, L. L., Domingues, M. C. D., & Sandoval, M. R. G. (2008). Environmental assessment of and active tailings pile in the state of Mexico (Central Mexico). Research Journal of Environmental and Earth Sciences, 2, 197–208.Google Scholar
- Michard, G., Sarazin, G., Jezequel, D., Alberic, P., & Ogier, S. (2001). Annual budget of chemical elements in a eutrophic lake, Aydatlake (Puy-de-Dôme), France. Hydrobiologia, 459(1), 27–46.CrossRefGoogle Scholar
- Michelan, T. S., Thomaz, S., Mormul, R. P., & Carvalho, P. (2010). Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology, 55(6), 1315–1326.CrossRefGoogle Scholar
- Min, K., Kang, H., & Lee, D. (2011). Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biology and Biochemistry, 43(12), 2461–2469.CrossRefGoogle Scholar
- Moiseenko, T. I., Gashkina, N. A., & Dinu, M. I. (2016). Enrichment of surface water by elements: Effects of air pollution, acidification and eutrophication. Environmental Processes, 3(1), 39–58.CrossRefGoogle Scholar
- Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11(2), 328–336.CrossRefGoogle Scholar
- Morford, J. L., Emerson, S. R., Breckel, E. J., & Kim, S. H. (2005). Diagenesis of oxyanions (V, U, Re, and Mo) in porewaters and sediments from a continental margin. Geochimica et Cosmochimica Acta, 69, 502–5032.CrossRefGoogle Scholar
- Muller, B., Meyer, J. S., & Gachter, R. (2016). Alkalinity regulation in calcium carbonate-buffered lakes. Limnology and Oceanography, 61(1), 341–352.CrossRefGoogle Scholar
- Muller, G. (1979). Heavy metals in the sediments of the Rhine: Changes since 1971. Umschau, 79(24), 778–783.Google Scholar
- Muller, G. (1981). The heavy metal pollution of the sediments of the Neckar and its tributaries: An inventory. Chemical Zeitung, 105, 157–164.Google Scholar
- National Wetland Atlas: Jammu and Kashmir. (2010). SAC/RESA/AFEG/NWIA/ATLAS/16/2010, Space Applications Centre, ISRO, Ahmedabad, India, 176.Google Scholar
- Nilin, J., Moreira, L. B., Aguiar, J. E., Marins, R., de Souza Abessa, D. M., da Cruz Lotufo, T. M., & Costa-Lotufo, L. V. (2013). Sediment quality assessment in a tropical estuary: The case of Ceará River, Northeastern Brazil. Marine Environmental Research, 91, 89–96.CrossRefGoogle Scholar
- Njenga, J. W. (2004). Comparative studies of water chemistry of four tropical lakes in Kenya and India. Asian Journal of Water Environment and Pollution, 1(1–2), 87–97.Google Scholar
- Nnaji, C. C., & Agunwamba, J. C. (2014). Quality assessment of water receiving effluents from crude oil flow stations in Niger Delta, Nigeria. Water and Environment Journal, 28(1), 104–113.CrossRefGoogle Scholar
- Novak, P. A., & Chambers, J. M. (2014). Investigation of nutrient thresholds to guide restoration and management of two impounded rivers in South-Western Australia. Ecological Engineering, 68, 116–123.CrossRefGoogle Scholar
- Olsen, S., Jeppesen, E., Moss, B., Ozkan, K., Beklioglu, M., Feuchtmayr, H., & Sondergaard, M. (2014). Factors influencing nitrogen processing in lakes: An experimental approach. Freshwater Biology, 60(4), 646–662.CrossRefGoogle Scholar
- Ouma, H., & Mwamburi, J. (2014). Spatial variations in nutrients and other physicochemical variables in the topographically closed Lake Baringo freshwater basin (Kenya). Lakes and Reservoirs: Research and Management, 19(1), 11–23.CrossRefGoogle Scholar
- Pandit AK (2002) Topical evolution of lakes in Kashmir Himalaya. Natural resources of western Himalaya (pp. 213–242). Valley Book House, Srinagar.Google Scholar
- Pandit, A. K. (1999). Freshwater ecosystems of the Himalaya. New York/London: Parthenon Publishing.Google Scholar
- Paramasivam, K., Ramasamy, V., & Suresh, G. (2015). Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigairiver, Tamilnadu, India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 397–407.CrossRefGoogle Scholar
- Parker, J. L., & Bloom, N. S. (2005). Preservation and storage techniques for low-level aqueous mercury speciation. Science of the Total Environment, 337(1), 253–263.CrossRefGoogle Scholar
- Pulido, C., Lucassen, E. C., Pedersen, O. L. E., & Roelofs, J. G. (2011). Influence of quantity and lability of sediment organic matter on the biomass of two isoetids, Littorellauniflora and Echinodorusrepens. Freshwater Biology, 56(5), 939–951.CrossRefGoogle Scholar
- Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241.CrossRefGoogle Scholar
- Quilliam, R. S., Van Niekerk, M. A., Chadwick, D. R., Cross, P., Hanley, N., Jones, D. L., & Oliver, D. M. (2015). Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? Journal of Environmental Management, 152, 210–217.CrossRefGoogle Scholar
- Radojevic, M., & Bashkin, V. N. (2006). Practical environmental analysis (2nd Edn).The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0 WF, UK.Google Scholar
- Raj, S. M., & Jayaprakash, M. (2007). Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environmental Geology, 56(1), 207–217.CrossRefGoogle Scholar
- Rashid, I., Romshoo, S. A., Amin, M., Khanday, S. A., & Chauhan, P. (2016). Linking human-biophysical interactions with the trophic status of Dal Lake, Kashmir Himalaya, India. Limnologica-Ecology and Management of Inland Waters, 62, 84–96.CrossRefGoogle Scholar
- Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. Hoboken: Wiley.CrossRefGoogle Scholar
- Rothwell, J. J., Dise, N. B., Taylor, K. G., Allott, T. E. H., Scholefield, P., Davies, H., & Neal, C. (2010). A spatial and seasonal assessment of river water chemistry across North West England. Science of the Total Environment, 408(4), 841–855.CrossRefGoogle Scholar
- Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and plant analysis laboratory manual. Aleppo: International Center for Agricultural Research in the Dry Areas (ICARDA).Google Scholar
- Sadasivam, S., & Manikam, A. (2005). Biochemical methods (2nd ed.). New Delhi: New Age International.Google Scholar
- Sany, S. B. T., Hashim, R., Rezayi, M., Salleh, A., & Safari, O. (2014). A review of strategies to monitor water and sediment quality for a sustainability assessment of marine environment. Environmental Science and Pollution Research, 21(2), 813–833.CrossRefGoogle Scholar
- Sarwar, N., Saifullah Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925–937.Google Scholar
- Sass, L. L., Bozek, M. A., Hauxwell, J. A., Wagner, K., & Knight, S. (2010). Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, USA. Aquatic Botany, 93(1), 1–8.CrossRefGoogle Scholar
- Schaller, J., Vymazal, J., & Brackhage, C. (2013). Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: A review. Ecological Engineering, 53, 106–114.CrossRefGoogle Scholar
- Scheffer, M. (1989). Alternative stable states in eutrophic, shallow freshwater systems: A minimal model. Hydrobiological Bulletin, 23(1), 73–83.CrossRefGoogle Scholar
- Schneider, B., Cunha, E. R., Marchese, M., & Thomaz, S. M. (2015). Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain. Aquatic Botany, 121, 67–75.CrossRefGoogle Scholar
- Selig, U., & Schlungbaum, G. (2003). Characterisation and quantification of phosphorus release from profundal bottom sediments in two dimictic lakes during summer stratification. Journal of Limnology, 62(2), 151–162.CrossRefGoogle Scholar
- Shaltout, K. H., Galal, T. M., & El-Komi, T. M. (2014). Biomass, nutrients and nutritive value of PersicariasalicifoliaWilld in the water courses of Nile Delta, Egypt. RendicontiLincei, 25(2), 167–179.Google Scholar
- Sierszen, M. E., Morrice, J. A., Trebitz, A. S., & Hoffman, J. C. (2012). A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management, 15(1), 92–106.CrossRefGoogle Scholar
- Singh, S. P., & Singh, B. P. (2010). Geothermal evolution of the evaporite-bearing sequences of the Lesser Himalaya, India. International Journal of Earth Sciences, 99(1), 101–108.CrossRefGoogle Scholar
- Sistla, S. A., Appling, A. P., Lewandowska, A. M., Taylor, B. N., & Wolf, A. A. (2015). Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124(7), 949–959.CrossRefGoogle Scholar
- Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van der Velde, G., & Roelofs, J. G. M. (2006). Internal eutrophication: How it works and what to do about it—A review. Chemistry and Ecology, 22(2), 93–111.CrossRefGoogle Scholar
- Sondergaard, M., Johansson, L. S., Lauridsen, T. L., Jorgensen, T. B., Liboriussen, L., & Jeppesen, E. (2010). Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology, 55(4), 893–908.CrossRefGoogle Scholar
- Sondergaard, M., Phillips, G., Hellsten, S., Kolada, A., Ecke, F., Mäemets, H., & Oggioni, A. (2013). Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia, 704(1), 165–177.CrossRefGoogle Scholar
- Srebotnjak, T., Carr, G., de Sherbinin, A., & Rickwood, C. (2012). A global water quality index and hot-deck imputation of missing data. Ecological Indicators, 17, 108–119.CrossRefGoogle Scholar
- Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.CrossRefGoogle Scholar
- Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: Treatment and reuse. New York: Metcalf & Eddy Inc, McGraw Hill.Google Scholar
- Thompson, J. B., Schultze-Lam, S., Beveridge, T. J., & Des Marais, D. J. (1997). Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1), 133–141.CrossRefGoogle Scholar
- Tian, D. L., Xiang, W. H., Yan, W. D., Kang, W. X., Deng, X. W., & Fan, Z. (2007). Biological cycles of mineral elements in a young mixed stand in abandoned mining soils. Journal of Integrative Plant Biology, 49(9), 1284–1293.CrossRefGoogle Scholar
- Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., & Kortelainen, P. L. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6–2), 2298–2314.CrossRefGoogle Scholar
- Turner, A., Millward, G. E., & Le Roux, S. M. (2004). Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 88(3), 179–192.CrossRefGoogle Scholar
- U. S. Environmental Protection Agency. (1994). Method 2007: Determination of Metals and Trace Elements in Water and Wastes By Inductively Coupled Plasma – Atomic Emission Spectrometry, Revision 4.4, EMMC.Google Scholar
- Udeigwe, T. K., Teboh, J. M., Eze, P. N., HashemStietiya, M., Kumar, V., Hendrix, J., & Kandakji, T. (2015). Implications of leading crop production practices on environmental quality and human health. Journal of Environmental Management, 151, 267–279.CrossRefGoogle Scholar
- UNEP. (2007). Global Environment Outlook 4 (GEO-4): environment for development. United Nations Environment Programme, Nairobi, Kenya.Google Scholar
- Urban, N. R., Brezonik, P. L., Baker, L. A., & Sherman, L. A. (2009). Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnology and Oceanography, 39(4), 797–815.CrossRefGoogle Scholar
- USEPA. (2014). The assessment and TMDL tracking and implementation system. National Summary of State Information. http://iaspub.epa.gov/waters10/attains_nation_cy.control#total_assessed_waters
- Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.CrossRefGoogle Scholar
- Wagner, B., Lotter, A. F., Nowaczyk, N., Reed, J. M., Schwalb, A., Sulpizio, R., & Zanchetta, G. (2009). A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). Journal of Paleolimnology, 41(3), 407–430.CrossRefGoogle Scholar
- Wali, A., Kawachi, A., Bougi, M. S. M., Dhia, H. B., Isoda, H., Tsujimura, M., & Ksibi, M. (2015). Effects of metal pollution on sediments in a highly saline aquatic ecosystem: Case of the Moknine Continental Sebkha (Eastern Tunisia). Bulletin of Environmental Contamination and Toxicology, 94(4), 511–518.CrossRefGoogle Scholar
- Wang, C. Y., Sample, D. J., Day, S. D., & Grizzard, T. J. (2015). Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecological Engineering, 78, 15–26.CrossRefGoogle Scholar
- Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107.CrossRefGoogle Scholar
- Wersal, R. M., & Madsen, J. D. (2011). Influences of water column nutrient loading on growth characteristics of the invasive aquatic macrophyte Myriophyllum aquaticum (Vell.)Verdc. Hydrobiologia, 665(1), 93–105.CrossRefGoogle Scholar
- Wetzel RG (2001) Land–water interfaces: Larger plants. Limnology, 3rd Edn., Academic Press, San Diego.Google Scholar
- Wiik, E., Bennion, H., Sayer, C. D., Davidson, T. A., McGowan, S., Patmore, I. R., & Clarke, S. J. (2015). Ecological sensitivity of marl lakes to nutrient enrichment: Evidence from Hawes water, UK. Freshwater Biology, 60(11), 2226–2247.CrossRefGoogle Scholar
- Wood, K. A., Stillman, R. A., Clarke, R. T., Daunt, F., & O’Hare, M. T. (2012). Understanding plant community responses to combinations of biotic and abiotic factors in different phases of the plant growth cycle. PLoS One, 7(11), 49824.CrossRefGoogle Scholar
- Wright, J. F., Sutcliffe, D. W., & Furse, M. T. (2000). Assessing the biological quality of fresh waters: RIVPACS and other techniques. In Assessing the biological quality of fresh waters: RIVPACS and other techniques. Freshwater Biological Association.Google Scholar
- Xiangcan, J. (2003). Analysis of eutrophication state and trend for lakes in China. Journal of Limnology, 62(1s), 60–66.CrossRefGoogle Scholar
- Xu, Y., Xie, R., Wang, Y., & Sha, J. (2014). Spatio-temporal variations of water quality in Yuqiao Reservoir Basin, North China. Frontiers of Environmental Science & Engineering, 9(4), 649–664.CrossRefGoogle Scholar
- Yu, S., Yu, G. B., Liu, Y., Li, G. L., Feng, S., Wu, S. C., & Wong, M. H. (2012). Urbanization impairs surface water quality: Eutrophication and metal stress in the Grand Canal of China. River Research and Applications, 28(8), 1135–1148.CrossRefGoogle Scholar
- Yuan, Z., Taoran, S., Yan, Z., & Tao, Y. (2014). Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China. Environmental Monitoring and Assessment, 186(2), 1219–1234.CrossRefGoogle Scholar
- Zaier, H., Ghnaya, T., Rejeb, K. B., Lakhdar, A., Rejeb, S., & Jemal, F. (2010). Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresource Technology, 101(11), 3978–3983.CrossRefGoogle Scholar
- Zargar, U. R., Chishti, M. Z., Yousuf, A. R., & Fayaz, A. (2012). Infection level of monogenean gill parasite, Diplozoonkashmirensis (Monogenea, Polyopisthocotylea) in the Crucian Carp, Carassiuscarassius from lake ecosystems of an altered water quality: What factors do have an impact on the Diplozoon infection? Veterinary Parasitology, 189(2), 218–226.CrossRefGoogle Scholar
- Zhang, C., Qiao, Q., Piper, J. D., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159(10), 3057–3070.CrossRefGoogle Scholar
- Zhang, F., Yan, X., Zeng, C., Zhang, M., Shrestha, S., Devkota, L. P., & Yao, T. (2012). Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. International Journal of Environmental Research and Public Health, 9, 1715–1731.CrossRefGoogle Scholar
- Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecological Engineering, 83, 268–275.CrossRefGoogle Scholar
- Zhu, X., Ji, H., Chen, Y., Qiao, M., & Tang, L. (2013). Assessment and sources of heavy metals in surface sediments of Miyun Reservoir, Beijing. Environmental Monitoring and Assessment, 185(7), 6049–6062.CrossRefGoogle Scholar