Skip to main content

Oxidative Stress and Modulation of Cardiac Kv1.5 Channel

  • Chapter
  • First Online:

Abstract

Oxidative stress is a result of imbalance between cellular oxidants and antioxidants. The oxidants like Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are considered to induce many pathological processes including heart failure. They target the ion channels for any kind of modifications or mutations that alter the channels' usual function. There are evidences showing oxidative stress to modulate the ion channels and transporters that play crucial role in general physiology of heart, leading to many prevalent cardiovascular disorders including atrial fibrillation (AF). Though the fundamental cause of AF is not still understood, but modulation of Kv1.5 channel has been successfully proved to be one of the strategic therapeutic interventions. In this chapter, the current knowledge on the effects of oxidative stress in heart has been summarized along with the roles of ion channels and their modulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055. https://doi.org/10.1016/0003-2697(69)90079-7

    Article  CAS  Google Scholar 

  2. Ceconi C, Boraso A, Cargnoni A, Ferrari R (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221

    Article  CAS  Google Scholar 

  3. Chandrasekaran A, Idelchik M del PS, Melendez JA (2017) Redox control of senescence and age-related disease. Redox Biol 11:91–102

    Article  CAS  Google Scholar 

  4. Kukreja RC, Hess ML (1992) The oxygen free radical system: From equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res 26:641–655. https://doi.org/10.1093/cvr/26.7.641

    Article  CAS  PubMed  Google Scholar 

  5. Singal PK, Khaper N, Palace V, Kumar D (1998) The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 40:426–432. https://doi.org/10.1016/S0008-6363(98)00244-2

    Article  CAS  PubMed  Google Scholar 

  6. Kukreja RC, Hess ML (1994) Free Radicals, Cardiovascular Dysfunction and Protective Strategies. R. G. Landes Co., Austin

    Google Scholar 

  7. Tomaselli GF, Barth AS (2010) Sudden cardio arrest: Oxidative stress irritates the heart. Nat Med 16:648–649

    Article  CAS  Google Scholar 

  8. Stuehr DJ, Kwon NS, Nathan CF (1990) FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun 168:558–565. https://doi.org/10.1016/0006-291X(90)92357-6

    Article  CAS  PubMed  Google Scholar 

  9. Marletta MA (1989) Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci 14:488–492

    Article  CAS  Google Scholar 

  10. Ferrari R, Guardigli G, Mele D et al (2004) Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 10:1699–1711. https://doi.org/10.2174/1381612043384718

    Article  CAS  PubMed  Google Scholar 

  11. Nishiyama Y, Ikeda H, Haramaki N et al (1998) Oxidative stress is related to exercise intolerance in patients with heart failure. Am Heart J 135:115–120. https://doi.org/10.1016/S0002-8703(98)70351-5

    Article  CAS  PubMed  Google Scholar 

  12. Keith M, Geranmayegan A, Sole MJ et al (1998) Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 31:1352–1356

    Article  CAS  Google Scholar 

  13. Mallat Z, Philip I, Lebret M et al (1998) Elevated levels of 8-iso-prostaglandin F(2α) in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97:1536–1539. https://doi.org/10.1161/01.CIR.97.16.1536

    Article  CAS  Google Scholar 

  14. Tappel AL (1980) Vitamin E and selenium protection from in vivo lipid peroxidation∗. Ann N Y Acad Sci 355:18–31. https://doi.org/10.1111/j.1749-6632.1980.tb21324.x

    Article  CAS  PubMed  Google Scholar 

  15. Weitz ZW, Birnbaum AJ, Skosey JL et al (1991) High breath pentane concentrations during acute myocardial infarction. Lancet 337:933–935. https://doi.org/10.1016/0140-6736(91)91569-G

    Article  CAS  PubMed  Google Scholar 

  16. Sobotka PA, Brottman MD, Weitz Z et al (1993) Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radic Biol Med 14:643–647. https://doi.org/10.1016/0891-5849(93)90145-K

    Article  CAS  PubMed  Google Scholar 

  17. Choudhary G, Dudley SC (2002) Heart failure, oxidative stress, and ion channel modulation. Congest Heart Fail 8:148–155. https://doi.org/10.1111/j.1527-5299.2002.00716.x

    Article  CAS  PubMed  Google Scholar 

  18. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates. Sunderland, MA 1375

    Google Scholar 

  19. Hille B (1992) Ionic channels of excitable membranes, Ed 2. Sinauer Association Inc., Sunderland, Massachusetts

    Google Scholar 

  20. Purves D, Augustine GJ, Fitzpatrick D et al (2004) Neuroscience, Ed 3. Sinauer Associates. Inc., USA

    Google Scholar 

  21. Hille B, Catterall WA (2012) Electrical excitability and ion channels. In: Basic neurochemistry, pp 63–80

    Chapter  Google Scholar 

  22. Roden DM, Balser JR, George AL Jr, Anderson ME (2002) Cardiac ion channels. Annu Rev Physiol 64:431–475. https://doi.org/10.1161/circep.108.789081

    Article  CAS  PubMed  Google Scholar 

  23. Grant AO (2009) Cardiac ion channels. Circ Arrhythm Electrophysiol 2:185–194

    Article  Google Scholar 

  24. Priest BT, McDermott JS (2015) Cardiac ion channels. Channels (Austin) 9:352–359. https://doi.org/10.1080/19336950.2015.1076597

    Article  Google Scholar 

  25. Ackerman MJ, Clapham DE (1997) Ion channels–basic science and clinical disease. N Engl J Med 336:1575–1586. https://doi.org/10.1056/NEJM199705293362207

    Article  CAS  PubMed  Google Scholar 

  26. Belardinelli L, Antzelevitch C, Fraser H (2004) Inhibition of late (sustained/persistent) sodium current: a potential drug target to reduce intracellular sodium-dependent calcium overload and its detrimental effects on cardiomyocyte function. Eur Hear J Suppl 6:I3–I7. https://doi.org/10.1016/S1520-765X(04)80002-6

    Article  CAS  Google Scholar 

  27. Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol 24:387–423. https://doi.org/10.1146/annurev.pa.24.040184.002131

    Article  CAS  PubMed  Google Scholar 

  28. Carmeliet E, Mubagwa K (1998) Antiarrhythmic drugs and cardiac ion channels: mechanisms of action. Prog Biophys Mol Biol 70:1–72. https://doi.org/10.1016/S0079-6107(98)00002-9. [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Annunziato L, Pannaccione A, Cataldi M et al (2002) Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 23:819–834. https://doi.org/10.1016/S0197-4580(02)00069-6

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Gutterman DD (2002) Oxidative stress and potassium channel function. Clin Exp Pharmacol Physiol 29:305–311

    Article  CAS  Google Scholar 

  31. Takahashi K, Kakimoto Y, Toda K, Naruse K (2013) Mechanobiology in cardiac physiology and diseases. J Cell Mol Med 17:225–232

    Article  Google Scholar 

  32. Fedele F, Mancone M, Chilian WM et al (2013) Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease. Basic Res Cardiol 108:387. https://doi.org/10.1007/s00395-013-0387-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramírez A, Vázquez-Sánchez AY, Carrión-Robalino N, Camacho J (2016) Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxidative Med Cell Longev 2016:1–17. https://doi.org/10.1155/2016/3928714

    Article  CAS  Google Scholar 

  34. Rourke BO, D a K, Tomaselli GF et al (1999) Mechanisms of altered excitation-contraction coupling in experimental studies. Heart 84:562–570. https://doi.org/10.1161/01.RES.84.5.562

    Article  Google Scholar 

  35. Pogwizd SM, Qi M, Yuan W et al (1999) Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019. https://doi.org/10.1161/01.RES.85.11.1009

    Article  CAS  PubMed  Google Scholar 

  36. Amos GJ, Wettwer E, Metzger F et al (1996) Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol 491:31–50. https://doi.org/10.1113/jphysiol.1996.sp021194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fedida D, Wible B, Wang Z et al (1993) Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res 73:210–216. https://doi.org/10.1161/01.RES.73.1.210

    Article  CAS  PubMed  Google Scholar 

  38. Feng J, Wible B, Li G-R et al (1997) Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 80:572–579. https://doi.org/10.1161/01.RES.80.4.572

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Fermini B, Nattel S (1993) Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ Res 73:1061–1076. https://doi.org/10.1161/01.RES.73.6.1061

    Article  CAS  PubMed  Google Scholar 

  40. Li GR, Feng J, Yue L et al (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 78:689–696

    Article  CAS  Google Scholar 

  41. Alpert JS, Petersen P, Godtfredsen J (1988) Atrial fibrillation: natural history, complications, and management. Annu Rev Med 39:41–52. https://doi.org/10.1146/annurev.me.39.020188.000353

    Article  CAS  PubMed  Google Scholar 

  42. Chugh SS, Blackshear JL, Shen WK et al (2001) Epidemiology and natural history of atrial fibrillation: clinical implications. J Am Coll Cardiol 37:371–378. https://doi.org/10.1016/S0735-1097(00)01107-4

    Article  CAS  PubMed  Google Scholar 

  43. Peters NS, Schilling RJ, Kanagaratnam P, Markides V (2002) Atrial fibrillation: strategies to control, combat, and cure. Lancet 359:593–603

    Article  Google Scholar 

  44. MacDonald PE, Wheeler MB (2003) Voltage-dependent K + channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46:1046–1062. https://doi.org/10.1007/s00125-003-1159-8

    Article  CAS  PubMed  Google Scholar 

  45. Roberds SL, Tamkun MM (1991) Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci 88:1798–1802

    Article  CAS  Google Scholar 

  46. Roe MW, Worley JF, Mittal AA et al (1996) Expression and function of pancreatic beta-cell delayed rectifier K+ channels. Role in stimulus-secretion coupling. J Biol Chem 271:32241–32246. https://doi.org/10.1074/jbc.271.50.32241

    Article  CAS  PubMed  Google Scholar 

  47. Su J, Yu H, Lenka N et al (2001) The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1. Pflugers Arch Eur J Physiol 442:49–56. https://doi.org/10.1007/s004240000508

    Article  CAS  Google Scholar 

  48. Snyders DJ, Tamkun MM, Bennett PB (1993) A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol 101:513–543. https://doi.org/10.1085/jgp.101.4.513

    Article  CAS  PubMed  Google Scholar 

  49. Gerlach U, Brendel J, Lang H-J et al (2001) Synthesis and activity of novel and selective IKs-channel blockers. J Med Chem 44:3831–3837. https://doi.org/10.1021/JM0109255

    Article  CAS  PubMed  Google Scholar 

  50. Svoboda LK, Reddie KG, Zhang L et al (2012) Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5. Circ Res 111:842–853. https://doi.org/10.1161/CIRCRESAHA.111.263525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhuyan R, Seal A (2015) Conformational dynamics of shaker-type Kv1.1 ion channel in open, closed, and two mutated states. J Membr Biol 248:241–255. https://doi.org/10.1007/s00232-014-9764-7

    Article  CAS  PubMed  Google Scholar 

  52. Bhuyan R, Seal A (2015) Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 derivatives. Biophys Chem 203–204:1–11. https://doi.org/10.1016/j.bpc.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  53. Bhuyan R, Seal A (2017) Dynamics and modulation studies of human voltage gated Kv1.5 channel. J Biomol Struct Dyn 35:380–398. https://doi.org/10.1080/07391102.2016.1144528

    Article  CAS  PubMed  Google Scholar 

  54. Ashcroft FM (2000) Ion channels and disease. Academic, London

    Google Scholar 

  55. Durell SR, Hao Y, Guy HR (1998) Structural models of the transmembrane region of voltage-gated and other K+channels in open, closed, and inactivated conformations. J Struct Biol 121:263–284. https://doi.org/10.1006/jsbi.1998.3962

    Article  CAS  PubMed  Google Scholar 

  56. Bezanilla F, Perozo E, Stefani E (1994) Gating of shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J 66:1011–1021. https://doi.org/10.1016/S0006-3495(94)80882-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zagotta WN, Hoshi T, Aldrich RW (1994) Shaker potassium channel gating. III: evaluation of kinetic models for activation. J Gen Physiol 103:321–362. https://doi.org/10.1085/jgp.103.2.321

    Article  CAS  PubMed  Google Scholar 

  58. Smith-Maxwell CJ, Ledwell JL, Aldrich RW (1998) Role of the S4 in cooperativity of voltage-dependent potassium channel activation. J Gen Physiol 111:399–420. https://doi.org/10.1085/jgp.111.3.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jensen MO, Borhani DW, Lindorff-Larsen K et al (2010) Principles of conduction and hydrophobic gating in K+ channels. Proc Natl Acad Sci 107:5833–5838. https://doi.org/10.1073/pnas.0911691107

    Article  PubMed  Google Scholar 

  60. Jensen M, Jogini V, Borhani DW et al (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233. https://doi.org/10.1126/science.1216533

    Article  CAS  PubMed  Google Scholar 

  61. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+channel in a lipid membrane-like environment. Nature 450:376–382. https://doi.org/10.1038/nature06265

    Article  CAS  PubMed  Google Scholar 

  62. Olson TM, Alekseev AE, Liu XK et al (2006) Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 15:2185–2191. https://doi.org/10.1093/hmg/ddl143

    Article  CAS  PubMed  Google Scholar 

  63. Nielsen NH, Winkel BG, Kanters JK et al (2007) Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients. Biochem Biophys Res Commun 354:776–782. https://doi.org/10.1016/j.bbrc.2007.01.048

    Article  CAS  PubMed  Google Scholar 

  64. Christophersen IE, Olesen MS, Liang B et al (2013) Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur Heart J 34:1517–1525. https://doi.org/10.1093/eurheartj/ehs442

    Article  CAS  PubMed  Google Scholar 

  65. Yang Y, Li J, Lin X et al (2009) Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation. J Hum Genet 54:277–283. https://doi.org/10.1038/jhg.2009.26

    Article  CAS  PubMed  Google Scholar 

  66. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76:7.20.1–7.20.41. https://doi.org/10.1002/0471142905.hg0720s76

    Article  Google Scholar 

  67. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pires DEV, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42:W314–W319. https://doi.org/10.1093/nar/gku411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30:335–342. https://doi.org/10.1093/bioinformatics/btt691

    Article  CAS  PubMed  Google Scholar 

  70. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL (2017) SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res 45:W229–W235. https://doi.org/10.1093/nar/gkx439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feng J, Xu D, Wang Z, Nattel S (1998) Ultrarapid delayed rectifier current inactivation in human atrial myocytes: properties and consequences. Am J Phys 275:H1717–H1725

    CAS  Google Scholar 

  72. Nattel S, Yue L, Wang Z (1999) Cardiac ultrarapid delayed rectifiers: a novel potassium current family of functional similarity and molecular diversity. Cell Physiol Biochem 9:217–226. https://doi.org/10.1159/000016318

    Article  CAS  PubMed  Google Scholar 

  73. Schaffer P, Pelzmann B, Bernhart E et al (1998) Estimation of outward currents in isolated human atrial myocytes using inactivation time course analysis. Pflugers Arch Eur J Physiol 436:457–468. https://doi.org/10.1007/s004240050657

    Article  CAS  Google Scholar 

  74. Nygren A, Leon LJ, Giles WR (2001) Simulations of the human atrial action potential. Philos Trans R Soc A Math Phys Eng Sci 359:1111–1125

    Article  CAS  Google Scholar 

  75. Nygren A, Fiset C, Firek L et al (1998) Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res 82:63–81. https://doi.org/10.1161/01.RES.82.1.63

    Article  CAS  PubMed  Google Scholar 

  76. Courtemanche M, Ramirez RJ, Nattel S (1999) Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc Res 42:477–489. https://doi.org/10.1016/S0008-6363(99)00034-6

    Article  CAS  PubMed  Google Scholar 

  77. Delpón E, Caballero R, Valenzuela C et al (1999) Benzocaine enhances and inhibits the K+current through a human cardiac cloned channel (Kv1.5). Cardiovasc Res 42:510–520. https://doi.org/10.1016/S0008-6363(99)00043-7

    Article  PubMed  Google Scholar 

  78. Franqueza L, Longobardo M, Vicente J et al (1997) Molecular determinants of stereoselective bupivacaine block of hKv1.5 channels. Circ Res 81:1053–1064. https://doi.org/10.1161/01.RES.81.6.1053

    Article  CAS  PubMed  Google Scholar 

  79. Caballero R, Delpón E, Valenzuela C et al (2001) Direct effects of candesartan and eprosartan on human cloned potassium channels involved in cardiac repolarization. Mol Pharmacol 59:825–836. https://doi.org/10.1124/mol.59.4.825

    Article  CAS  PubMed  Google Scholar 

  80. Moreno I, Caballero R, González T et al (2003) Effects of irbesartan on cloned potassium channels involved in human cardiac repolarization. J Pharmacol Exp Ther 304:862–873. https://doi.org/10.1124/jpet.102.042325

    Article  CAS  PubMed  Google Scholar 

  81. Caballero R, Delpón E, Valenzuela C et al (2000) Losartan and its metabolite E3174 modify cardiac delayed rectifier K+currents. Circulation 101:1199–1205. https://doi.org/10.1161/01.CIR.101.10.1199

    Article  CAS  PubMed  Google Scholar 

  82. Iftinca M, Waldron GJ, Triggle CR, Cole WC (2001) State-dependent block of rabbit vascular smooth muscle delayed rectifier and Kv1.5 channels by inhibitors of cytochrome P450-dependent enzymes. J Pharmacol Exp Ther 298:718–728

    CAS  PubMed  Google Scholar 

  83. Lacerda AE, Roy ML, Lewis EW, Rampe D (1997) Interactions of the nonsedating antihistamine loratadine with a Kv1.5-type potassium channel cloned from human heart. Mol Pharmacol 52:314–322

    Article  CAS  Google Scholar 

  84. Caballero R, Valenzuela C, Longobardo M et al (1999) Effects of rupatadine, a new dual antagonist of histamine and platelet-activating factor receptors, on human cardiac Kv1.5 channels. Br J Pharmacol 128:1071–1081. https://doi.org/10.1038/sj.bjp.0702890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Delpón E, Valenzuela C, Tamargo J (1999) Blockade of cardiac potassium and other channels by antihistamines. Drug Saf 21(Suppl 1):11–8–7

    Article  Google Scholar 

  86. Choe H, Lee Y-K, Lee Y-T et al (2003) Papaverine blocks hKv1.5 channel current and human atrial ultrarapid delayed rectifier K+ currents. J Pharmacol Exp Ther 304:706–712. https://doi.org/10.1124/jpet.102.042770

    Article  CAS  PubMed  Google Scholar 

  87. Rampe D, Murawsky MK (1997) Blockade of the human cardiac K+ channel Kv1.5 by the antibiotic erythromycin. Naunyn Schmiedeberg’s Arch Pharmacol 355:743–750. https://doi.org/10.1007/PL00005008

    Article  CAS  Google Scholar 

  88. Camm AJ, Savelieva I (2004) Advances in antiarrhythmic drug treatment of atrial fibrillation: where do we stand now? Heart Rhythm 1:244–246

    Article  Google Scholar 

  89. Choudhury A, Lip GY (2004) Antiarrhythmic drugs in atrial fibrillation: an overview of new agents, their mechanisms of action and potential clinical utility. Expert Opin Investig Drugs 13:841–855. https://doi.org/10.1517/13543784.13.7.841

    Article  CAS  PubMed  Google Scholar 

  90. Decher N, Pirard B, Bundis F et al (2004) Molecular basis for Kv1.5 channel block. Conservation of drug binding sites among voltage-gated K+channels. J Biol Chem 279:394–400. https://doi.org/10.1074/jbc.M307411200

    Article  CAS  PubMed  Google Scholar 

  91. Peukert S, Brendel J, Pirard B et al (2004) Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg Med Chem Lett 14:2823–2827. https://doi.org/10.1016/j.bmcl.2004.03.057

    Article  CAS  PubMed  Google Scholar 

  92. Bachmann A, Gutcher I, Kopp K et al (2001) Characterization of a novel Kv1.5 channel blocker in Xenopus oocytes, CHO cells, human and rat cardiomyocytes. Naunyn Schmiedeberg’s Arch Pharmacol 364:472–478. https://doi.org/10.1007/s002100100474

    Article  CAS  Google Scholar 

  93. Decher N, Kumar P, Gonzalez T et al (2006) Binding site of a novel Kv1.5 blocker: a “foot in the door” against atrial fibrillation. Mol Pharmacol 70:1204–1211. https://doi.org/10.1124/mol.106.026203

    Article  CAS  PubMed  Google Scholar 

  94. Peukert S, Brendel J, Pirard B et al (2003) Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel Kv1.5. J Med Chem 46:486–498. https://doi.org/10.1021/jm0210461

    Article  CAS  PubMed  Google Scholar 

  95. Brendel J, Peukert S (2003) Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Curr Med Chem Cardiovasc Hematol Agents 1:273–287. https://doi.org/10.2174/1568016033477441

    Article  CAS  PubMed  Google Scholar 

  96. Wu S, Fluxe A, Janusz JM et al (2006) Discovery and synthesis of tetrahydroindolone derived semicarbazones as selective Kv1.5 blockers. Bioorg Med Chem Lett 16:5859–5863. https://doi.org/10.1016/j.bmcl.2006.08.057

    Article  CAS  PubMed  Google Scholar 

  97. Li Y, Starrett JE, Meanwell NA et al (1997) The discovery of novel openers of Ca2+-dependent large-conductance potassium channels: pharmacophore search and physiological evaluation of flavonoids. Bioorg Med Chem Lett 7:759–762. https://doi.org/10.1016/S0960-894X(97)00076-0

    Article  CAS  Google Scholar 

  98. Caballero R, Moreno I, González T et al (2002) Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5). Cardiovasc Res 56:104–117. https://doi.org/10.1016/S0008-6363(02)00509-6

    Article  CAS  PubMed  Google Scholar 

  99. Snyders J, Knoth KM, Roberds SL, Tamkun MM (1992) Time-, voltage-, and state-dependent block by quinidine of a cloned human cardiac potassium channel. Mol Pharmacol 41:322–330

    CAS  PubMed  Google Scholar 

  100. Snyders DJ, Ycola SW (1995) Determinants of antiarrhythmic drug action: electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res 77:575–583. https://doi.org/10.1161/01.RES.77.3.575

    Article  CAS  PubMed  Google Scholar 

  101. Yeola SW, Rich TC, Uebele VN et al (1996) Molecular analysis of a binding site for quinidine in a human cardiac delayed rectifier K+ channel. Circ Res 78:1105–1114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhuyan, R., Chakraborti, S. (2019). Oxidative Stress and Modulation of Cardiac Kv1.5 Channel. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_9

Download citation

Publish with us

Policies and ethics