Skip to main content

Reactive Oxygen Species and Their Epigenetic Consequences in Heart Diseases

  • Chapter
  • First Online:
Oxidative Stress in Heart Diseases

Abstract

Highly reactive molecules with an unpaired electron are known as free radicals. They collide with other molecules and set up a chain reaction by either passing on the unpaired electron to the neighbouring molecule or getting quenched by it. In biological systems, the most damaging free radicals are the oxygen radicals – also termed as the reactive oxygen species [ROS] – namely superoxide, hydroxyl, and perhydroxyl. Oxidation/peroxidation of lipids, DNA bases and structural membranes through these radicals results in different pathological events depending on the site of oxidation.

These radicals are derived mostly from within our body through several well-known mechanisms, and, to counter their effects, the body has a well-established anti-oxidant system. In physiological situations, the two are in equilibrium. However, when there is an imbalance between these oxidants and anti-oxidants, pathology results.

Of all tissues, the myocardium is the most susceptible to oxidative damage as they harbour a high density of mitochondria, the powerhouses of the cells wherein oxidative phosphorylation occurs. One of the mechanisms of oxidative pathology is through epigenetic modifications, the three major types of epigenetic mechanisms being methylation/demethylation, acetylation/de-acetylation and histone modification. Whichever mechanism is involved, the result is altered gene expression. This may occur in the embryo, the fetus, the infant or the adult. At each stage, the consequences are different.

Broadly speaking, epigenetic modifications during early cardiac development lead to structural deformities, whereas these modifications occurring during later development of the heart result in conduction abnormalities and arrhythmias, coronary artery malformations and valvular defects. When oxidative damage occurs later in life, the result can be arrhythmias, hypertrophic cardiomyopathies, congestive cardiac failure and myocardial infarction. Lipid peroxidation coupled with oxidative damage to the basement membrane of blood vessels leads to coronary artery remodelling with resultant atherothrombosis and myocardial infarction.

This chapter details the mechanisms involved and the possible therapeutic implications thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bender D (2015) Free radicals and antioxidant nutrients. In: Rodwell VW, Kennelly PJ, Bender DA, Weil PA, Botham KM (eds) Harper’s illustrated biochemistry, 13th edn. McGraw Hill, New York

    Google Scholar 

  2. Iles KE, Forman HJ (2002) Macrophage signalling and respiratory burst. Immunol Res 26(1–3):95–105

    Article  CAS  PubMed  Google Scholar 

  3. Kietzmann T, Petri A, Shvetsova A, Gerhold JM, Gorlach A (2017) The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 174:1533–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petry A, Weitnauer M, Gorlach A (2010) Receptor activation of NADPH oxidases. Antioxid Redox Signal 13:467–487

    Article  CAS  PubMed  Google Scholar 

  5. Gao S, Li C, Chen L, Zhou X (2017) Actions and mechanisms of reactive oxygen species and oxidative system in semen. Mol Cell Toxicol 13:143–154

    Article  CAS  Google Scholar 

  6. Annunziato A (2008) DNA packaging: nucleosomes and chromatin. Nat Educ 1(1):26

    Google Scholar 

  7. Le DD, Fujimori DG (2012) Protein and nucleic acid methylating enzymes: mechanisms and regulation. Curr Opin Chem Biol 16:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Branco MR, Ficz G, Reik W (2011) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    Article  PubMed  Google Scholar 

  9. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A et al (2016) DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun 7:12418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M (2015) Oxidative stress alters global histone modification and DNA methylation. Free radical biology & medicine 82:22–28. https://doi.org/10.1016/j.freeradbiomed.2015.01.028

    Article  CAS  Google Scholar 

  12. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Research 21(3):381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  14. Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Gorlach A (2017) The epigenetic landscape related to reactive oxygen species formation in cardiovascular system. Br J Pharmacol 174:1533–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting Gquadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10:261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Wurch A, Bonish U, Gunther S, Fleishmann BK, Schubeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288. https://doi.org/10.1038/ncomms6288

    Article  CAS  PubMed  Google Scholar 

  17. Thornburg K, Jonker S, O’Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106(1):289–299. https://doi.org/10.1016/j.pbiomolbio.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  18. Han P, Hang CT, Yang J, Chang CP (2011) Chromatin remodelling in cardiac development and physiology. Circ Res 183(3):378–396. https://doi.org/10.1161/CIRCRESAHA.110.224287

    Article  CAS  Google Scholar 

  19. Van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson KA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17(5):662–673. https://doi.org/10.1016/j.devcel.2009.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, Kendziorski C, BonDurant SS, Golos T, Bird I, Shah D (2014) Metabolic gene profile in early human fetal heart development. Mol Hum Reprod 20(7):690–700. https://doi.org/10.1093/molehr/gau026

    Article  CAS  PubMed  Google Scholar 

  21. Lee S, Choi E, Cha MJ, Hwang KC (2014) Looking into a conceptual framework of ROS-miRNA-atrial fibrillation. Int J Mol Sci 15:21754–21776. https://doi.org/10.3390/ijms151221754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hudasek K, Brown ST, Fearon IM (2004) H2O2 regulates recombinant Ca2+ channel alpha1C subunits but does not mediate their sensitivity to acute hypoxia. Biochem Biophys Res Commun 135–141(22):318

    Google Scholar 

  23. Morris TE, Sulakhe PV (1997) Sarcoplasmic reticulum Ca2+-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic Biol Med 22:37–47

    Article  CAS  PubMed  Google Scholar 

  24. Goldhaber JI (1996) Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol 271:H823–H833

    CAS  PubMed  Google Scholar 

  25. Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321. https://doi.org/10.1016/j.cardiores.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  26. Kyrychenko S, Kyrychenko V, Ma B, Ikeda Y, Sadoshima J, Shirokova N (2015) Pivotal role of miR 448 in the development of ROS-induced cardiomyopathy. Circ Res 108:324–334. https://doi.org/10.1093/cvr/cvv238

    Article  CAS  Google Scholar 

  27. He F, Zuo L (2015) Redox roles of reactive oxygen species in cardiovascular diseases. Int J Mol Sci 16:27770–27780. https://doi.org/10.3390/ijms161126059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaturvedi P, Tyagi SC (2014) Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 173(1):1–11. https://doi.org/10.1016/j.ijcard.2014.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jain AK, Mehra NK, Swarnakar NK (2015) Role of antioxidants for the treatment of cardiovascular diseases: challenges and oppurtunities. Curr Pharm Des 21(30):4441–4455

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhargava, S. (2019). Reactive Oxygen Species and Their Epigenetic Consequences in Heart Diseases. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_6

Download citation

Publish with us

Policies and ethics