Skip to main content

Molecular Targets and Novel Therapeutics to Target Oxidative Stress in Cardiovascular Diseases

  • Chapter
  • First Online:
Oxidative Stress in Heart Diseases

Abstract

According to WHO, cardiovascular disease burden is significantly increasing worldwide due to an ageing population and spread of the Western diet and lifestyle. Moreover, it is now evident that autophagy influenes the development and progression of various cardiovascular diseases. Interestingly, the regulatory mechanisms of autophagy are primarily activated upon either reactive oxygen species overproduction, or NO deficiency, or nutrient deprivation. Although, RONS and the ensuing oxidative stress are studied in the milieu of impairment of biologically vital targets like DNA, lipids, or proteins, but many antioxidant-based clinical studies have failed to generate a positive result in the context of human disease, particularly CVDs. Along with moderate aerobic exercise, antioxidant therapy such as resveratrol and other phytochemicals, may prevent against the adverse effects of oxidative stress, however, there is a need to obviate or lessen the further tissue damage created by free radicals in later stages of CVD. However, apart from antioxidants, there are several potential candidates that may serve as therapeutic agents to curb oxidative stress in CVDs such as γ-glutamylcysteine supplementation, targeting mitochondria, HSP72 augmentation and curbing ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy KS (2016) Global Burden of Disease Study 2015 provides GPS for global health 2030. Lancet 388:1448–1449

    Article  PubMed  Google Scholar 

  2. WHO (2013) Global action plan for the prevention and control of NCDs 2013/2020. World Health

    Google Scholar 

  3. WHO (2015) World health statistics 2015. World Health Statistics

    Google Scholar 

  4. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury. Part II: animal and human studies. Circulation 108:2034–2040

    Article  PubMed  Google Scholar 

  5. Bachschmid M, Schildknecht S, Ullrich V (2005) Redox regulation of vascular prostanoid synthesis by the nitric oxide-superoxide system. Biochem Biophys Res Commun 338:536–542

    Article  CAS  PubMed  Google Scholar 

  6. Chen CA, Wang TY, Varadharaj S et al (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roy S, Khanna S, Sen CK (2008) Redox regulation of the VEGF signaling path and tissue vascularization: hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radic Biol Med 44:180–192

    Article  CAS  PubMed  Google Scholar 

  8. Altschmied J, Haendeler J (2009) Thioredoxin-1 and endothelial cell aging: role in cardiovascular diseases. Antioxid Redox Signal 11:1733–1740

    Article  CAS  PubMed  Google Scholar 

  9. Wang ZV, Ferdous A, Hill JA (2013) Cardiomyocyte autophagy: metabolic profit and loss. Heart Fail Rev 18:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ryter SW, Lee SJ, Smith A et al (2010) Autophagy in vascular disease. Proc Am Thorac Soc 7:40–47

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rifki OF, Hill JA (2012) Cardiac autophagy: good with the bad. J Cardiovasc Pharmacol 60:248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lavandero S, Troncoso R, Rothermel BA et al (2013) Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy 9:1455–1466

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J (2015) Teaching the basics of autophagy and mitophagy to redox biologists--mechanisms and experimental approaches. Redox Biol 4:242–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377–388

    Article  CAS  PubMed  Google Scholar 

  15. Elahi MM, Kong YX, Matata BM (2009) Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2:259–269

    Article  PubMed  PubMed Central  Google Scholar 

  16. Montezano AC, Touyz RM (2012) Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 28:288–295

    Article  CAS  PubMed  Google Scholar 

  17. Gongora MC, Qin Z, Laude K (2006) Role of extracellular superoxide dismutase in hypertension. Hypertension 48:473–481

    Article  CAS  PubMed  Google Scholar 

  18. Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51:1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rimm EB, Stampfer MJ (2000) Antioxidants for vascular disease. Med Clin North Am 84:239–249

    Article  CAS  PubMed  Google Scholar 

  20. Baltaci SB, Mogulkoc R, Baltaci AK (2016) Resveratrol and exercise. Biomed Rep 5:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Autréaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Google Scholar 

  22. Powers SK, Ji LL, Kavazis AN et al (2011) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1:941–969

    PubMed  PubMed Central  Google Scholar 

  23. Adams L, Franco MC, Estevez AG (2015) Reactive nitrogen species in cellular signaling. Exp Biol Med (Maywood) 240:711–717

    Article  CAS  Google Scholar 

  24. Venkataraman K, Khurana S, Tai TC (2013) Oxidative stress in aging--matters of the heart and mind. Int J Mol Sci 14:17897–17925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Genestra M (2007) Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell Signal 19:1807–1819

    Google Scholar 

  26. Salisbury D, Bronas U (2015) Reactive oxygen and nitrogen species: impact on endothelial dysfunction. Nurs Res 64:53–66

    Article  PubMed  Google Scholar 

  27. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26

    Article  CAS  PubMed  Google Scholar 

  28. Mühlenhoff U (2000) The FAPY-DNA glycosylase (Fpg) is required for survival of the cyanobacterium Synechococcus elongatus under high light irradiance. FEMS Microbiol Lett 187:127–132

    Article  PubMed  Google Scholar 

  29. Byrd AK, Zybailov BL, Maddukuri L et al (2016) Evidence that G-quadruplex DNA accumulates in the cytoplasm and participates in stress granule assembly in response to oxidative stress. J Biol Chem 291:18041–18057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Delanghe S, Delanghe JR, Speeckaert R et al (2017) Mechanisms and consequences of carbamoylation. Nat Rev Nephrol 13:580–593

    Article  CAS  PubMed  Google Scholar 

  31. Reynaert NL, Gopal P, Rutten EPA et al (2016) Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; Overview of clinical evidence and potential contributions to disease. Int J Biochem Cell Biol 81(Pt B):403–418

    Article  CAS  PubMed  Google Scholar 

  32. Davis KE, Prasad C, Vijayagopal P et al (2016) Advanced glycation end products, inflammation, and chronic metabolic diseases: links in a chain? Crit Rev Food Sci Nutr 56:989–998

    Article  CAS  PubMed  Google Scholar 

  33. Mahajan N, Dhawan V (2013) Receptor for advanced glycation end products (RAGE) in vascular and inflammatory diseases. Int J Cardiol 168:1788–1194

    Article  PubMed  Google Scholar 

  34. Mahajan N, Malik N, Bahl A et al (2009) Receptor for advanced glycation end products (RAGE) and its inflammatory ligand EN-RAGE in non-diabetic subjects with pre-mature coronary artery disease. Atherosclerosis 207:597–602

    Article  CAS  PubMed  Google Scholar 

  35. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frijhoff J, Winyard PG, Zarkovic N et al (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23:1144–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abete P, Napoli C, Santoro G et al (1999) Age-related decrease in cardiac tolerance to oxidative stress. J Mol Cell Cardiol 31:227–236

    Article  CAS  PubMed  Google Scholar 

  38. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  CAS  PubMed  Google Scholar 

  39. Fuchs D, Avanzas P, Arroyo-Espliguero R et al (2009) The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr Med Chem 16:4644–4653

    Article  CAS  PubMed  Google Scholar 

  40. Murr C, Winklhofer-Roob BM, Schroecksnadel K et al (2009) Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis 202:543–549

    Article  CAS  PubMed  Google Scholar 

  41. Elas M, Bielanska J, Pustelny K et al (2008) Detection of mitochondrial dysfunction by EPR technique in mouse model of dilated cardiomyopathy. Free Radic Biol Med 45:321–328

    Article  CAS  PubMed  Google Scholar 

  42. Heymes C, Bendall JK, Ratajczak P et al (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171

    Article  CAS  PubMed  Google Scholar 

  43. Santos CX, Raza S, Shah AM (2016) Redox signaling in the cardiomyocyte: from physiology to failure. Int J Biochem Cell Biol 74:145–151

    Article  CAS  PubMed  Google Scholar 

  44. Sirokmány G, Donkó Á, Geiszt M (2016) Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol Sci 37:318–327

    Article  CAS  PubMed  Google Scholar 

  45. Zhang M, Brewer AC, Schröder K et al (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A 107:18121–18126

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuroda J, Ago T, Matsushima S et al (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107:15565–15570

    Article  PubMed  PubMed Central  Google Scholar 

  47. Burgoyne JR, Mongue-Din H, Eaton P et al (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111:1091–1106

    Article  CAS  PubMed  Google Scholar 

  48. Martin-Padura I, de Nigris F, Migliaccio E et al (2008) p66Shc deletion confers vascular protection in advanced atherosclerosis in hypercholesterolemic apolipoprotein E knockout mice. Endothelium 15:276–287

    Article  CAS  PubMed  Google Scholar 

  49. Rota M, LeCapitaine N, Hosoda T et al (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99:42–52

    Article  CAS  PubMed  Google Scholar 

  50. WHO (2001) Biomarkers in risk assessment: validity and validation. Available from: http://www.who.int/iris/handle/10665/42363. Accessed 29 Nov 2017

  51. Semba RD, Bandinelli S, Sun K et al (2009) Plasma carboxymethyl-lysine, an advanced glycation end product, and all-cause and cardiovascular disease mortality in older community-dwelling adults. J Am Geriatr Soc 57:1874–1880

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chang JB, Chu NF, Syu JT et al (2011) Advanced glycation end products (AGEs) in relation to atherosclerotic lipid profiles in middle-aged and elderly diabetic patients. Lipids Health Dis 10:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brinkley TE, Nicklas BJ, Kanaya AM et al (2009) Plasma oxidized low-density lipoprotein levels and arterial stiffness in older adults: the health, aging, and body composition study. Hypertension 53:846–852

    Article  CAS  PubMed  Google Scholar 

  54. Trpkovic A, Resanovic I, Stanimirovic J et al (2015) Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci 52:70–85

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Tan GJ, Han LN et al (2017) Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol 14:135–150

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang WH, Katz R, Brennan ML et al (2009) Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am J Cardiol 103:1269–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Teerlink T, Luo Z, Palm F et al (2009) Cellular ADMA: regulation and action. Pharmacol Res 60:448–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tain YL, Huang LT (2011) Asymmetric dimethylarginine: clinical applications in pediatric medicine. J Formos Med Assoc 110:70–77

    Article  CAS  PubMed  Google Scholar 

  59. Tain YL, Hsu CN (2017) Toxic dimethylarginines: asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Toxins (Basel) 9:E92

    Article  CAS  Google Scholar 

  60. Huang LT, Hsieh CS, Chang KA et al (2012) Roles of nitric oxide and asymmetric dimethylarginine in pregnancy and fetal programming. Int J Mol Sci 13:14606–14622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Böger RH, Maas R, Schulze F et al (2009) Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality–an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res 60:481–487

    Article  CAS  PubMed  Google Scholar 

  62. Franceschelli S, Ferrone A, Pesce M et al (2013) Biological functional relevance of asymmetric dimethylarginine (ADMA) in cardiovascular disease. Int J Mol Sci 14:24412–24421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alpoim PN, Sousa LP, Mota AP et al (2015) Asymmetric Dimethylarginine (ADMA) in cardiovascular and renal disease. Clin Chim Acta 440:36–39

    Article  CAS  PubMed  Google Scholar 

  64. Pizzarelli F, Maas R, Dattolo P et al (2013) Asymmetric dimethylarginine predicts survival in the elderly. Age (Dordr) 35:2465–2475

    Article  CAS  Google Scholar 

  65. Geiger J, Teichmann L, Grossmann R et al (2005) Monitoring of clopidogrel action: comparison of methods. Clin Chem 51:957–965

    Article  CAS  PubMed  Google Scholar 

  66. Erlinge D, Gurbel PA, James S et al (2013) Prasugrel 5 mg in the very elderly attenuates platelet inhibition but maintains noninferiority to prasugrel 10 mg in nonelderly patients: the GENERATIONS trial, a pharmacodynamic and pharmacokinetic study in stable coronary artery disease patients. J Am Coll Cardiol 62:577–583

    Article  CAS  PubMed  Google Scholar 

  67. Finck BN, Kelly DP (2007) Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115:2540–2548

    Article  PubMed  Google Scholar 

  68. Sugden MC, Caton PW, Holness MJ (2010) PPAR control: it’s SIRTainly as easy as PGC. J Endocrinol 204:93–104

    Article  CAS  PubMed  Google Scholar 

  69. Lira VA, Brown DL, Lira AK et al (2010) Nitric oxide and AMPK cooperatively regulate PGC-1 in skeletal muscle cells. J Physiol 588:3551–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dutta D, Calvani R, Bernabei R et al (2012) Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res 110:1125–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scheitlin CG, Nair DM, Crestanello JA et al (2014) Fluid mechanical forces and endothelial mitochondria: a bioengineering perspective. Cell Mol Bioeng 7:483–496

    Article  CAS  PubMed  Google Scholar 

  72. Chiong M, Wang ZV, Pedrozo Z et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2:e244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nemchenko A, Chiong M, Turer A et al (2011) Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 51:584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valentim L, Laurence KM, Townsend PA et al (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40:846–852

    Article  CAS  PubMed  Google Scholar 

  75. Ma X, Liu H, Foyil SR et al (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125:3170–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. He C, Zhu H, Zhang W et al (2013) 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol 183:626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martinet W, Schrijvers DM, Timmermans JP et al (2008) Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol 154:1236–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Salabei JK, Cummins TD, Singh M et al (2013) PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J 451:375–388

    Article  CAS  PubMed  Google Scholar 

  79. Martinet W, De Meyer GR (2009) Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 104:304–317

    Article  CAS  PubMed  Google Scholar 

  80. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  81. Oka T, Hikoso S, Yamaguchi O et al (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ding Z, Liu S, Wang X et al (2014) LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovasc Res 103:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu N, Zhang Y (2017) TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-κB/JNK-dependent activation of autophagy. Biochim Biophys Acta 1863:2001–2011

    Article  CAS  Google Scholar 

  84. Baigent C, Keech A, Kearney PM et al (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278

    Article  CAS  PubMed  Google Scholar 

  85. Takemoto M, Node K, Nakagami H et al (2001) Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 108:1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Node K, Fujita M, Kitakaze M et al (2003) Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 108:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Das S, Otani H, Maulik N et al (2005) Lycopene, tomatoes, and coronary heart disease. Free Radic Res 39:449–455

    Article  CAS  PubMed  Google Scholar 

  88. Brown DI, Griendling KK (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116:531–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chu PY, Campbell MJ, Miller SG et al (2014) Anti-hypertensive drugs in children and adolescents. World J Cardiol 6:234–244

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hansson L, Lindholm LH, Ekbom T et al (1999) Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 354:1751–1756

    Article  CAS  PubMed  Google Scholar 

  91. Inoue I, Goto S, Matsunaga T et al (2001) The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+,Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 50:3–11

    Article  CAS  PubMed  Google Scholar 

  92. Mercer JR, Yu E, Figg N et al (2012) The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice. Free Radic Biol Med 52:841–849

    Article  CAS  PubMed  Google Scholar 

  93. Barry-Lane PA, Patterson C, van der Merwe M et al (2001) p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 108:1513–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jain AK, Mehra NK, Swarnakar NK (2015) Role of antioxidants for the treatment of cardiovascular diseases: challenges and opportunities. Curr Pharm Des 21:4441–4455

    Article  CAS  PubMed  Google Scholar 

  95. Tsimikas S (2006) Oxidative biomarkers in the diagnosis and prognosis of cardiovascular disease. Am J Cardiol 98:9P–17P

    Article  CAS  PubMed  Google Scholar 

  96. Strobel NA, Fassett RG, Marsh SA et al (2011) Oxidative stress biomarkers as predictors of cardiovascular disease. Int J Cardiol 147:191–201

    Article  PubMed  Google Scholar 

  97. Zeng S, Zhou X, Ge L et al (2014) Monocyte subsets and monocyte-platelet aggregates in patients with unstable angina. J Thromb Thrombolysis 38:439–446

    Article  CAS  PubMed  Google Scholar 

  98. Kalyanaraman B, Darley-Usmar V, Davies KJ et al (2014) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  CAS  Google Scholar 

  99. Ullevig SL, Kim HS, Short JD et al (2016) Protein S-glutathionylation mediates macrophage responses to metabolic cues from the extracellular environment. Antioxid Redox Signal 25:836–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lotufo PA (2003) After the hype, HOPE (and HPS): some lessons from the Women’s Health Initiative trial, the Heart Outcomes Prevention Evaluation study and the Heart Prevention Study. Sao Paulo Med J 121:3–4

    Article  PubMed  Google Scholar 

  101. Lane JS, Magno CP, Lane KT et al (2008) Nutrition impacts the prevalence of peripheral arterial disease in the United States. J Vasc Surg 48:897–904

    Article  PubMed  Google Scholar 

  102. Stephens NG, Parsons A, Schofield PM et al (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–786

    Article  CAS  PubMed  Google Scholar 

  103. Ashor AW, Siervo M, Lara J et al (2014) Antioxidant vitamin supplementation reduces arterial stiffness in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr 144:1594–1602

    Article  CAS  PubMed  Google Scholar 

  104. Gitenay D, Lyan B, Rambeau M et al (2007) Comparison of lycopene and tomato effects on biomarkers of oxidative stress in vitamin E deficient rats. Eur J Nutr 46:468–475

    Article  CAS  PubMed  Google Scholar 

  105. Griffin XL, Warner F, Costa M (2008) The role of electromagnetic stimulation in the management of established non-union of long bone fractures: what is the evidence? Injury 39:419–429

    Article  CAS  PubMed  Google Scholar 

  106. Ehnert S, Fentz AK, Schreiner A et al (2017) Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O(2)(-) and H(2)O(2). Sci Rep 7:14544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cohen P (2009) Targeting protein kinases for the development of anti-inflammatory drugs. Curr Opin Cell Biol 21:317–324

    Article  CAS  PubMed  Google Scholar 

  108. Gehart H, Kumpf S, Ittner A et al (2010) MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 11:834–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Raggi F, Vallesi G, Rufini S et al (2008) ELF magnetic therapy and oxidative balance. Electromagn Biol Med 27:325–339

    Article  CAS  PubMed  Google Scholar 

  110. Funk RH, Monsees T, Ozkucur N (2009) Electromagnetic effects – from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  CAS  PubMed  Google Scholar 

  111. Blank M, Goodman R (2009) Electromagnetic fields stress living cells. Pathophysiology 16:71–78

    Article  PubMed  Google Scholar 

  112. Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105:223–246

    Article  CAS  PubMed  Google Scholar 

  113. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  114. Franco R, Schoneveld OJ, Pappa A et al (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113:234–258

    Article  CAS  PubMed  Google Scholar 

  115. Gould NS, Day BJ (2011) Targeting maladaptive glutathione responses in lung disease. Biochem Pharmacol 81:187–193

    Article  CAS  PubMed  Google Scholar 

  116. Anderson ME, Meister A (1983) Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis. Proc Natl Acad Sci U S A 80:707–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 111–112:1-14.

    Google Scholar 

  118. Ballatori N, Krance SM, Notenboom S et al (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zarka MH, Bridge WJ (2017) Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study. Redox Biol 11:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cacciatore I, Cornacchia C, Pinnen F et al (2010) Prodrug approach for increasing cellular glutathione levels. Molecules 15:1242–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pocernich CB, Butterfield DA (2012) Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 1822:625–630

    Article  CAS  PubMed  Google Scholar 

  122. Wu JH, Batist G (2013) Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta 1830:3350–3353

    Article  CAS  PubMed  Google Scholar 

  123. Fokkema ML, Vlaar PJ, Vogelzang M et al (2009) Effect of high-dose intracoronary adenosine administration during primary percutaneous coronary intervention in acute myocardial infarction: a randomized controlled trial. Circ Cardiovasc Interv 2:323–329

    Article  CAS  PubMed  Google Scholar 

  124. Ibáñez B, Heusch G, Ovize M et al (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471

    Article  PubMed  Google Scholar 

  125. Cung TT, Morel O, Cayla G et al (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031

    Article  CAS  PubMed  Google Scholar 

  126. Heusch G, Gersh BJ (2017) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38:774–784

    CAS  PubMed  Google Scholar 

  127. Currie RW, Karmazyn M, Kloc M et al (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63:543–549

    Article  CAS  PubMed  Google Scholar 

  128. Knowlton AA, Brecher P, Apstein CS (1991) Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 87:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Donnelly TJ, Sievers RE, Vissern FL et al (1992) Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation 85:769–778

    Article  CAS  PubMed  Google Scholar 

  130. Hutter MM, Sievers RE, Barbosa V et al (1994) Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89:355–360

    Article  CAS  PubMed  Google Scholar 

  131. Plumier JC, Ross BM, Currie RW et al (1995) Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95:1854–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tanimoto T, Parseghian MH, Nakahara T et al (2017) Cardioprotective effects of HSP72 administration on ischemia-reperfusion injury. J Am Coll Cardiol 70:1479–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dahm CC, Moore K, Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281:10056–10065

    Article  CAS  PubMed  Google Scholar 

  134. Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49

    Article  CAS  PubMed  Google Scholar 

  135. Hill BG, Darley-Usmar VM (2008) S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning. Biochem J 412:e11–e13

    Article  CAS  PubMed  Google Scholar 

  136. Kang PT, Zhang L, Chen CL et al (2012) Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic Biol Med 53:962–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hurd TR, Requejo R, Filipovska A et al (2008) Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J Biol Chem 283:24801–24815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen CL, Chen J, Rawale S et al (2008) Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. J Biol Chem 283:27991–28003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yarian CS, Rebrin I, Sohal RS (2005) Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 330:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Benderdour M, Charron G, DeBlois D et al (2003) Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development. J Biol Chem 278:45154–45159

    Article  CAS  PubMed  Google Scholar 

  141. McLain AL, Cormier PJ, Kinter M et al (2013) Glutathionylation of α-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. Free Radic Biol Med 61:161–169

    Article  CAS  PubMed  Google Scholar 

  142. Bulteau AL, Lundberg KC, Ikeda-Saito M et al (2005) Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc Natl Acad Sci U S A 102:5987–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stachowiak O, Dolder M, Wallimann T et al (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699

    Article  CAS  PubMed  Google Scholar 

  144. Kim J, Rodriguez ME, Guo M et al (2008) Oxidative modification of cytochrome c by singlet oxygen. Free Radic Biol Med 44:1700–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zarse K, Schmeisser S, Groth M et al (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15:451–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19:757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Adlam VJ, Harrison JC, Porteous CM et al (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095

    Article  CAS  PubMed  Google Scholar 

  148. Ong SB, Subrayan S, Lim SY et al (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022

    Article  CAS  PubMed  Google Scholar 

  149. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Andres AM, Hernandez G, Lee P et al (2014) Mitophagy is required for acute cardioprotection by simvastatin. Antioxid Redox Signal 21:1960–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liao JK (2014) Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 123:540–541

    Article  CAS  Google Scholar 

  152. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ron D, Walter P (2014) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  Google Scholar 

  154. Han J, Kaufman RJ (2014) Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes Dev 31:1417–1438

    Article  CAS  Google Scholar 

  155. Wang M, Kaufman RJ (2014) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–335

    Article  CAS  Google Scholar 

  156. Schröder M, Kaufman RJ (2014) ER stress and the unfolded protein response. Mutat Res 569:29–63

    Article  CAS  Google Scholar 

  157. Walter P, Ron D (2014) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  Google Scholar 

  158. Eletto D, Chevet E, Argon Y et al (2014) Redox controls UPR to control redox. J Cell Sci 127:3649–3658

    Article  CAS  PubMed  Google Scholar 

  159. Santos CX, Tanaka LY, Wosniak J et al (2014) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  Google Scholar 

  160. Schröder M, Kaufman RJ (2014) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  CAS  Google Scholar 

  161. Choi SK, Lim M, Byeon SH et al (2014) Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats. Sci Rep 6:31925

    Article  CAS  Google Scholar 

  162. Choi SK, Lim M, Yeon SI et al (2014) Inhibition of endoplasmic reticulum stress improves coronary artery function in type 2 diabetic mice. Exp Physiol 101:768–777

    Article  CAS  Google Scholar 

  163. Kassan M, Galán M, Partyka M et al (2014) Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler Thromb Vasc Biol 32:1652–1661

    Article  CAS  Google Scholar 

  164. Ji C, Kaplowitz N, Lau MY et al (2014) Liver-specific loss of glucose-regulated protein 78 perturbs the unfolded protein response and exacerbates a spectrum of liver diseases in mice. Hepatology 54:229–239

    Article  CAS  Google Scholar 

  165. Ricobaraza A, Cuadrado-Tejedor M, Marco S et al (2014) Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus 22:1040–1050

    Article  CAS  Google Scholar 

  166. Ozcan U, Yilmaz E, Ozcan L et al (2014) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140

    Article  CAS  Google Scholar 

  167. Remondelli P, Renna M (2014) The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front Mol Neurosci 10:187

    Article  CAS  Google Scholar 

  168. Daosukho C, Chen Y, Noel T et al (2014) Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic Biol Med 42:1818–1825

    Article  CAS  Google Scholar 

  169. Erbay E, Babaev VR, Mayers JR et al (2014) Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 15:1383–1391

    Article  CAS  Google Scholar 

  170. Cheng WP, Wang BW, Shyu KG (2014) Regulation of GADD153 induced by mechanical stress in cardiomyocytes. Eur J Clin Invest 39:960–971

    Article  CAS  Google Scholar 

  171. Kudo T, Kanemoto S, Hara H et al (2014) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15:364–375

    Article  CAS  Google Scholar 

  172. Blais JD, Chin KT, Zito E et al (2014) A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. J Biol Chem 285:20993–21003

    Article  CAS  Google Scholar 

  173. Boyce M, Bryant KF, Jousse C et al (2014) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  CAS  Google Scholar 

  174. Lee DY, Lee KS, Lee HJ et al (2014) Activation of PERK signaling attenuates Abeta-mediated ER stress. PLoS One 5:e10489

    Article  CAS  Google Scholar 

  175. Sokka AL, Putkonen N, Mudo G et al (2014) Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901–908

    Article  CAS  Google Scholar 

  176. Li RJ, He KL, Li X et al (2014) Salubrinal protects cardiomyocytes against apoptosis in a rat myocardial infarction model via suppressing the dephosphorylation of eukaryotic translation initiation factor 2α. Mol Med Rep 12:1043–1049

    Article  CAS  Google Scholar 

  177. Liu Y, Wang J, Qi SY et al (2014) Reduced endoplasmic reticulum stress might alter the course of heart failure via caspase-12 and JNK pathways. Can J Cardiol 30:368–375

    Article  PubMed  Google Scholar 

  178. Hong D, Bai YP, Gao HC et al (2014) Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis 235:310–317

    Article  CAS  PubMed  Google Scholar 

  179. Cnop M, Ladriere L, Hekerman P et al (2014) Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J Biol Chem 282:3989–3997

    Article  CAS  Google Scholar 

  180. Ladrière L, Igoillo-Esteve M, Cunha DA et al (2014) Enhanced signaling downstream of ribonucleic Acid-activated protein kinase-like endoplasmic reticulum kinase potentiates lipotoxic endoplasmic reticulum stress in human islets. J Clin Endocrinol Metab 95:1442–1449

    Article  CAS  Google Scholar 

  181. Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Logan A, Shabalina IG, Prime TA, Rogatti S, Kalinovich AV, Hartley RC, Budd RC, Cannon B, Murphy MP In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice. Aging Cell 13:765–768

    Google Scholar 

  183. Dikalov S, Griendling KK, Harrison DG (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49:717–727

    Article  CAS  PubMed  Google Scholar 

  184. Villamena FA, Zweier JL (2004) Detection of reactive oxygen and nitrogen species by EPR spin trapping. Antioxid Redox Signal 6:619–629

    Article  CAS  PubMed  Google Scholar 

  185. Lee R, Margaritis M, Channon KM et al (2012) Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem 19:2504–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dikalov SI, Mason RP (2001) Spin trapping of polyunsaturated fatty acid-derived peroxyl radicals: reassignment to alkoxyl radical adducts. Free Radic Biol Med 30:187–197

    Article  CAS  PubMed  Google Scholar 

  188. Proniewski B, Czarny J, Khomich TI et al (2018) Immuno-spin trapping-based detection of oxidative modifications in cardiomyocytes and coronary endothelium in the progression of heart failure in Tgαq∗44 mice. Front Immunol 9:938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhawan, V., Bakshi, C., Rather, R.A. (2019). Molecular Targets and Novel Therapeutics to Target Oxidative Stress in Cardiovascular Diseases. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_4

Download citation

Publish with us

Policies and ethics