Skip to main content

Role of Oxidative Stress in the Pathophysiology of Arterial Hypertension and Heart Failure

  • Chapter
  • First Online:
Book cover Oxidative Stress in Heart Diseases

Abstract

Oxidative stress is an imbalance between endogenous prooxidant and antioxidant systems leading to excessive production of reactive oxygen species (ROS), which potentially disrupt redox signalling and/or inflict damage to macromolecules. Numerous studies over the last two decades have suggested a central role for oxidative stress in the development of several cardiovascular diseases. This chapter aims to summarize the current experimental and clinical evidence about the major oxidant and antioxidant changes occurring in hypertension and heart failure, and to provide a critical overview of the relevance of oxidative stress in the pathophysiology of these prevalent diseases. Finally, the strategies known to prevent or ameliorate oxidative damage, both in animal models and in patients, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7(8):504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  3. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Valko M et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  6. Brewer AC et al (2013) Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 18(9):1114–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11(3):669–702

    Article  CAS  PubMed  Google Scholar 

  8. Turko IV, Murad F (2002) Protein nitration in cardiovascular diseases. Pharmacol Rev 54(4):619–634

    Article  CAS  PubMed  Google Scholar 

  9. Costa S et al (2016) Statins and oxidative stress in chronic heart failure. Rev Port Cardiol 35(1):41–57

    Article  PubMed  Google Scholar 

  10. Sousa T et al (2012) Lipid peroxidation and antioxidants in arterial hypertension. In: Catala A (ed) Lipid peroxidation. IntechOpen, Rijeka, pp 345–392

    Google Scholar 

  11. Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114(3):524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  13. Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53(6):885–892

    Article  CAS  PubMed  Google Scholar 

  14. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    Article  CAS  PubMed  Google Scholar 

  15. Nazarewicz RR et al (2013) Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am J Physiol Heart Circ Physiol 305(8):H1131–H1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang A et al (2011) Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int 80(1):51–60

    Article  CAS  PubMed  Google Scholar 

  17. Dey S et al (2018) Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 123(3):356–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moris D et al (2017) The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med 5(16):324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181–H2190

    Article  CAS  PubMed  Google Scholar 

  20. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  21. Datla SR, Griendling KK (2010) Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension 56(3):325–330

    Article  CAS  PubMed  Google Scholar 

  22. Nistala R, Whaley-Connell A, Sowers JR (2008) Redox control of renal function and hypertension. Antioxid Redox Signal 10(12):2047–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brandes RP, Takac I, Schroder K (2011) No superoxide--no stress?: Nox4, the good NADPH oxidase! Arterioscler Thromb Vasc Biol 31(6):1255–1257

    Article  CAS  PubMed  Google Scholar 

  24. Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47(9):1239–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sedeek M et al (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24(10):1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Montezano AC et al (2015) Redox signaling, Nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens 24(5):425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu P et al (2014) Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol 2:570–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manea A et al (2015) Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 461(1):172–179

    Article  CAS  PubMed  Google Scholar 

  29. Munzel T et al (2017) Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol 70(2):212–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang M et al (2013) NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal 18(9):1024–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsushima S et al (2013) Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1alpha and upregulation of peroxisome proliferator-activated receptor-alpha. Circ Res 112(8):1135–1149

    Article  CAS  PubMed  Google Scholar 

  32. Davies MJ (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48(1):8–19

    Article  CAS  PubMed  Google Scholar 

  33. Liu YC et al (2013) Genetic polymorphisms of myeloperoxidase and their effect on hypertension. Blood Press 22(5):282–289

    Article  CAS  PubMed  Google Scholar 

  34. Anatoliotakis N et al (2013) Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem 13(2):115–138

    Article  CAS  PubMed  Google Scholar 

  35. Baldus S et al (2006) Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation 113(15):1871–1878

    Article  CAS  PubMed  Google Scholar 

  36. Nussbaum C et al (2013) Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 18(6):692–713

    Article  CAS  PubMed  Google Scholar 

  37. Tang WH et al (2007) Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J Am Coll Cardiol 49(24):2364–2370

    Article  CAS  PubMed  Google Scholar 

  38. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837

    Article  PubMed  CAS  Google Scholar 

  39. Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55(2):250–260

    Article  CAS  PubMed  Google Scholar 

  40. Horita S et al (2014) Regulatory roles of nitric oxide and angiotensin II on renal tubular transport. World J Nephrol 3(4):295–301

    Article  PubMed  PubMed Central  Google Scholar 

  41. Massion PB et al (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5):388–398

    Article  CAS  PubMed  Google Scholar 

  42. Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 12(2):135–142

    Article  CAS  PubMed  Google Scholar 

  43. Li H et al (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol 47(12):2536–2544

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto E et al (2015) The pivotal role of eNOS uncoupling in vascular endothelial dysfunction in patients with heart failure with preserved ejection fraction. Int J Cardiol 190:335–337

    Article  PubMed  Google Scholar 

  45. Moens AL et al (2008) Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 117(20):2626–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606

    Article  CAS  PubMed  Google Scholar 

  47. Kuzkaya N et al (2005) Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol 70(3):343–354

    Article  CAS  PubMed  Google Scholar 

  48. Hooper DC et al (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95(2):675–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson RJ et al (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41(6):1183–1190

    Article  CAS  PubMed  Google Scholar 

  50. Niskanen LK et al (2004) Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med 164(14):1546–1551

    Article  CAS  PubMed  Google Scholar 

  51. Loperena R, Harrison DG (2017) Oxidative stress and hypertensive diseases. Med Clin North Am 101(1):169–193

    Article  PubMed  Google Scholar 

  52. Feig DI, Soletsky B, Johnson RJ (2008) Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 300(8):924–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. MacIsaac RL et al (2016) Allopurinol and cardiovascular outcomes in adults with hypertension. Hypertension 67(3):535–540

    Article  CAS  PubMed  Google Scholar 

  54. Guzik TJ et al (2006) Coronary artery superoxide production and NOX isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26(2):333–339

    Article  CAS  PubMed  Google Scholar 

  55. Baldus S et al (2006) Inhibition of xanthine oxidase improves myocardial contractility in patients with ischemic cardiomyopathy. Free Radic Biol Med 41(8):1282–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Givertz MM et al (2015) Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation 131(20):1763–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hare JM et al (2008) Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 51(24):2301–2309

    Article  CAS  PubMed  Google Scholar 

  58. Casas AI et al (2015) Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid Redox Signal 23(14):1171–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deshwal S et al (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69

    Article  CAS  PubMed  Google Scholar 

  60. Kaludercic N et al (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813(7):1323–1332

    Article  CAS  PubMed  Google Scholar 

  61. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44(4):381–386

    Article  CAS  PubMed  Google Scholar 

  64. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115

    Article  CAS  PubMed  Google Scholar 

  65. Williams B et al (2018) ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104

    Article  PubMed  Google Scholar 

  66. Coffman TM (2011) Under pressure: the search for the essential mechanisms of hypertension. Nat Med 17(11):1402–1409

    Article  CAS  PubMed  Google Scholar 

  67. Davisson RL, Zimmerman MC (2010) Angiotensin II, oxidant signaling, and hypertension: down to a T? Hypertension 55(2):228–230

    Article  CAS  PubMed  Google Scholar 

  68. Kobori H et al (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59(3):251–287

    Article  CAS  PubMed  Google Scholar 

  69. Reckelhoff JF, Romero JC (2003) Role of oxidative stress in angiotensin-induced hypertension. Am J Phys Regul Integr Comp Phys 284(4):R893–R912

    CAS  Google Scholar 

  70. Weir MR, Dzau VJ (1999) The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 12(12 Pt 3):205S–213S

    Article  CAS  PubMed  Google Scholar 

  71. Zimmerman MC et al (2004) Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res 95(2):210–216

    Article  CAS  PubMed  Google Scholar 

  72. Makino A et al (2003) Increased renal medullary H2O2 leads to hypertension. Hypertension 42(1):25–30

    Article  CAS  PubMed  Google Scholar 

  73. Sousa T et al (2012) Role of H(2)O(2) in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol 166(8):2386–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gomes P et al (2009) Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure. Oxidative Med Cell Longev 2(3):138–145

    Article  Google Scholar 

  75. Simao S et al (2011) Age-related changes in renal expression of oxidant and antioxidant enzymes and oxidative stress markers in male SHR and WKY rats. Exp Gerontol 46(6):468–474

    Article  CAS  PubMed  Google Scholar 

  76. Gomes P et al (2013) Loss of oxidative stress tolerance in hypertension is linked to reduced catalase activity and increased c-Jun NH2-terminal kinase activation. Free Radic Biol Med 56:112–122

    Article  CAS  PubMed  Google Scholar 

  77. Ulker S et al (2003) Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc Res 59(2):488–500

    Article  CAS  PubMed  Google Scholar 

  78. Chan SH et al (2009) Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension 53(2):217–227

    Article  CAS  PubMed  Google Scholar 

  79. Kristal B et al (1998) Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. Am J Hypertens 11(8 Pt 1):921–928

    Article  CAS  PubMed  Google Scholar 

  80. Lacy F et al (2000) Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 36(5):878–884

    Article  CAS  PubMed  Google Scholar 

  81. Zhou L et al (2006) Reduction in extracellular superoxide dismutase activity in African-American patients with hypertension. Free Radic Biol Med 41(9):1384–1391

    Article  CAS  PubMed  Google Scholar 

  82. Redon J et al (2003) Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41(5):1096–1101

    Article  CAS  PubMed  Google Scholar 

  83. Kedziora-Kornatowska K et al (2004) The markers of oxidative stress and activity of the antioxidant system in the blood of elderly patients with essential arterial hypertension. Cell Mol Biol Lett 9(4A):635–641

    CAS  PubMed  Google Scholar 

  84. Wen Y et al (1996) Lipid peroxidation and antioxidant vitamins C and E in hypertensive patients. Ir J Med Sci 165(3):210–212

    Article  CAS  PubMed  Google Scholar 

  85. Pedro-Botet J et al (2000) Decreased endogenous antioxidant enzymatic status in essential hypertension. J Hum Hypertens 14(6):343–345

    Article  CAS  PubMed  Google Scholar 

  86. Ward NC, Croft KD (2006) Hypertension and oxidative stress. Clin Exp Pharmacol Physiol 33(9):872–876

    Article  CAS  PubMed  Google Scholar 

  87. Ceriello A (2008) Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 31(Suppl 2):S181–S184

    Article  CAS  PubMed  Google Scholar 

  88. Grossman E (2008) Does increased oxidative stress cause hypertension? Diabetes Care 31(Suppl 2):S185–S189

    Article  CAS  PubMed  Google Scholar 

  89. Lin HH et al (2003) Hydrogen peroxide increases the activity of rat sympathetic preganglionic neurons in vivo and in vitro. Neuroscience 121(3):641–647

    Article  CAS  PubMed  Google Scholar 

  90. Vaziri ND et al (2000) Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 36(1):142–146

    Article  CAS  PubMed  Google Scholar 

  91. Dikalova A et al (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112(17):2668–2676

    Article  CAS  PubMed  Google Scholar 

  92. Godin N et al (2010) Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 77(12):1086–1097

    Article  CAS  PubMed  Google Scholar 

  93. Gavazzi G et al (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580(2):497–504

    Article  CAS  PubMed  Google Scholar 

  94. Simao S et al (2011) H2 O2 stimulates Cl- /HCO 3- exchanger activity through oxidation of thiol groups in immortalized SHR renal proximal tubular epithelial cells. J Cell Biochem 112(12):3660–3665

    Article  CAS  PubMed  Google Scholar 

  95. Baumer AT et al (2007) The NAD(P)H oxidase inhibitor apocynin improves endothelial NO/superoxide balance and lowers effectively blood pressure in spontaneously hypertensive rats: comparison to calcium channel blockade. Clin Exp Hypertens 29(5):287–299

    Article  PubMed  CAS  Google Scholar 

  96. Beswick RA et al (2001) NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38(5):1107–1111

    Article  CAS  PubMed  Google Scholar 

  97. Sousa T et al (2008) Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. Eur J Pharmacol 588(2–3):267–276

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Y et al (2004) The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat. Am J Hypertens 17(3):260–265

    Article  CAS  PubMed  Google Scholar 

  99. Nabha L et al (2005) Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats. Clin Exp Hypertens 27(1):71–82

    Article  CAS  PubMed  Google Scholar 

  100. Wilcox CS (2005) Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Phys Regul Integr Comp Phys 289(4):R913–R935

    CAS  Google Scholar 

  101. Heart Protection Study Collaborative, G (2002) MRC/BHF heart protection study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360(9326):23–33

    Article  Google Scholar 

  102. Sesso HD et al (2012) Multivitamins in the prevention of cardiovascular disease in men: the physicians’ health study II randomized controlled trial. JAMA 308(17):1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vivekananthan DP et al (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361(9374):2017–2023

    Article  CAS  PubMed  Google Scholar 

  104. Baykal Y et al (2003) Effects of antihypertensive agents, alpha receptor blockers, beta blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium channel blockers, on oxidative stress. J Hypertens 21(6):1207–1211

    Article  CAS  PubMed  Google Scholar 

  105. de Cavanagh EM et al (2010) Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: effects of losartan and atenolol. Am J Hypertens 23(12):1318–1325

    Article  PubMed  CAS  Google Scholar 

  106. Dauchet L et al (2006) Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 136(10):2588–2593

    Article  CAS  PubMed  Google Scholar 

  107. Steinhubl SR (2008) Why have antioxidants failed in clinical trials? Am J Cardiol 101(10A):14D–19D

    Article  CAS  PubMed  Google Scholar 

  108. Brown DA et al (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238–250

    Article  CAS  PubMed  Google Scholar 

  109. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Haworth RA, Potter KT, Russell DC (2010) Role of arachidonic acid, lipoxygenase, and mitochondrial depolarization in reperfusion arrhythmias. Am J Physiol Heart Circ Physiol 299(1):H165–H174

    Article  CAS  PubMed  Google Scholar 

  112. Santos CX et al (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50(7):777–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Buggisch M et al (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 120(Pt 5):885–894

    Article  CAS  PubMed  Google Scholar 

  114. Sauer H et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476(3):218–223

    Article  CAS  PubMed  Google Scholar 

  115. Saitoh S et al (2007) Redox-dependent coronary metabolic dilation. Am J Physiol Heart Circ Physiol 293(6):H3720–H3725

    Article  CAS  PubMed  Google Scholar 

  116. Saitoh S et al (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26(12):2614–2621

    Article  CAS  PubMed  Google Scholar 

  117. Andersson DC et al (2011) Mitochondrial production of reactive oxygen species contributes to the beta-adrenergic stimulation of mouse cardiomycytes. J Physiol 589(Pt 7):1791–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15(4):686–690

    Article  CAS  PubMed  Google Scholar 

  119. Zhang M et al (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A 107(42):18121–18126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ponikowski P et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975

    Article  PubMed  Google Scholar 

  121. Reina-Couto M et al (2016) Resolving inflammation in heart failure: novel protective lipid mediators. Curr Drug Targets 17(10):1206–1223

    Article  CAS  PubMed  Google Scholar 

  122. Braunwald E (2015) The war against heart failure: the lancet lecture. Lancet 385(9970):812–824

    Article  PubMed  Google Scholar 

  123. Guha K, McDonagh T (2013) Heart failure epidemiology: European perspective. Curr Cardiol Rev 9(2):123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ramani GV, Uber PA, Mehra MR (2010) Chronic heart failure: contemporary diagnosis and management. Mayo Clin Proc 85(2):180–195

    Article  PubMed  PubMed Central  Google Scholar 

  125. Spodick DH (2003) Acute cardiac tamponade. N Engl J Med 349(7):684–690

    Article  PubMed  Google Scholar 

  126. von Haehling S et al (2010) Elevated levels of asymmetric dimethylarginine in chronic heart failure: a pathophysiologic link between oxygen radical load and impaired vasodilator capacity and the therapeutic effect of allopurinol. Clin Pharmacol Ther 88(4):506–512

    Article  CAS  Google Scholar 

  127. Kanaan GN, Harper ME (2017) Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta Gen Subj 1861(11 Pt A):2822–2829

    Article  CAS  PubMed  Google Scholar 

  128. Heymans S et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11(2):119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108(4):356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Mueller C et al (2006) Inflammation and long-term mortality in acute congestive heart failure. Am Heart J 151(4):845–850

    Article  PubMed  Google Scholar 

  131. Khaper N et al (2010) Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 13(7):1033–1049

    Article  CAS  PubMed  Google Scholar 

  132. Chen X et al (2008) Role of reactive oxygen species in tumor necrosis factor-alpha induced endothelial dysfunction. Curr Hypertens Rev 4(4):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang C et al (2003) Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases. Am J Physiol Heart Circ Physiol 285(6):H2563–H2572

    Article  CAS  PubMed  Google Scholar 

  134. Reina-Couto M et al (2014) Impaired resolution of inflammation in human chronic heart failure. Eur J Clin Investig 44(6):527–538

    Article  CAS  Google Scholar 

  135. Reina-Couto M et al (2018) Endocan as a new biomarker of severity in acute heart failure. Eur J Heart Fail 20:P459

    Google Scholar 

  136. Reina-Couto M et al (2018) Inflammation resolution mediators in acute heart failure. J Hypertens 36(e-Supplement 1):e211

    Article  Google Scholar 

  137. Munzel T et al (2015) Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J 36(38):2555–2564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  138. van Riet EE et al (2014) Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur J Heart Fail 16(7):772–777

    Article  PubMed  CAS  Google Scholar 

  139. Karimi Galougahi K et al (2015) Redox biomarkers in cardiovascular medicine. Eur Heart J 36(25):1576–1582. 1582a-b

    Article  PubMed  CAS  Google Scholar 

  140. Patel RS et al (2016) Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 133(4):361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358(20):2148–2159

    Article  CAS  PubMed  Google Scholar 

  142. Tang WH et al (2006) Plasma myeloperoxidase levels in patients with chronic heart failure. Am J Cardiol 98(6):796–799

    Article  CAS  PubMed  Google Scholar 

  143. Adam M et al (2015) Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Sci Rep 5:9704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. O’Donoghue ML et al (2016) Multimarker risk stratification in patients with acute myocardial infarction. J Am Heart Assoc 5(5):e002586

    PubMed  PubMed Central  Google Scholar 

  145. Virzi GM et al (2018) Levels of proinflammatory cytokines, oxidative stress, and tissue damage markers in patients with acute heart failure with and without cardiorenal syndrome type 1. Cardiorenal Med 8(4):321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kataoka Y et al (2014) Myeloperoxidase levels predict accelerated progression of coronary atherosclerosis in diabetic patients: insights from intravascular ultrasound. Atherosclerosis 232(2):377–383

    Article  CAS  PubMed  Google Scholar 

  147. Meuwese MC et al (2007) Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-norfolk prospective population study. J Am Coll Cardiol 50(2):159–165

    Article  CAS  PubMed  Google Scholar 

  148. Pastori D et al (2015) Does mediterranean diet reduce cardiovascular events and oxidative stress in atrial fibrillation? Antioxid Redox Signal 23(8):682–687

    Article  CAS  PubMed  Google Scholar 

  149. Cunnington C et al (2012) Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation 125(11):1356–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shirodaria C et al (2007) Global improvement of vascular function and redox state with low-dose folic acid: implications for folate therapy in patients with coronary artery disease. Circulation 115(17):2262–2270

    Article  CAS  PubMed  Google Scholar 

  151. Santos CN et al (2018) Pure polyphenols applications for cardiac health and disease. Curr Pharm Des 24(19):2137–2156

    Article  CAS  PubMed  Google Scholar 

  152. Driver C et al (2018) Cardioprotective effects of metformin. J Cardiovasc Pharmacol 72(2):121–127

    CAS  PubMed  Google Scholar 

  153. Alemayehu M et al (2017) Effect of ticagrelor versus clopidogrel on vascular reactivity. J Am Coll Cardiol 69(17):2246–2248

    Article  CAS  PubMed  Google Scholar 

  154. Nanhwan MK et al (2014) Chronic treatment with ticagrelor limits myocardial infarct size: an adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol 34(9):2078–2085

    Article  CAS  PubMed  Google Scholar 

  155. Montuschi P, Barnes PJ, Roberts LJ 2nd (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18(15):1791–1800

    Article  CAS  PubMed  Google Scholar 

  156. Mallat Z et al (1998) Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97(16):1536–1539

    Article  CAS  PubMed  Google Scholar 

  157. Polidori MC et al (2004) Increased F2 isoprostane plasma levels in patients with congestive heart failure are correlated with antioxidant status and disease severity. J Card Fail 10(4):334–338

    Article  CAS  PubMed  Google Scholar 

  158. Davies SS, Roberts LJ 2nd (2011) F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med 50(5):559–566

    Article  CAS  PubMed  Google Scholar 

  159. Hummel SL et al (2012) Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension 60(5):1200–1206

    Article  CAS  PubMed  Google Scholar 

  160. de Meirelles LR et al (2011) Platelet activation, oxidative stress and overexpression of inducible nitric oxide synthase in moderate heart failure. Clin Exp Pharmacol Physiol 38(10):705–710

    Article  PubMed  CAS  Google Scholar 

  161. Ellis GR et al (2002) Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative stress. Eur J Heart Fail 4(2):193–199

    Article  CAS  PubMed  Google Scholar 

  162. White M et al (2006) Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond) 110(4):483–489

    Article  CAS  Google Scholar 

  163. Amaki T et al (2004) Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease. Heart 90(10):1211–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Charach G et al (2015) Usefulness of antibodies to oxidized low-density lipoproteins as predictors of morbidity and prognosis in heart failure patients aged >/=65 years. Am J Cardiol 116(9):1379–1384

    Article  CAS  PubMed  Google Scholar 

  165. Kato M et al (2017) Stretching exercises improve vascular endothelial dysfunction through attenuation of oxidative stress in chronic heart failure patients with an implantable cardioverter defibrillator. J Cardiopulm Rehabil Prev 37(2):130–138

    Article  PubMed  Google Scholar 

  166. Mondal NK et al (2016) Systemic inflammatory response syndrome in end-stage heart failure patients following continuous-flow left ventricular assist device implantation: differences in plasma redox status and leukocyte activation. Artif Organs 40(5):434–443

    Article  CAS  PubMed  Google Scholar 

  167. Lokuta AJ et al (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111(8):988–995

    Article  CAS  PubMed  Google Scholar 

  168. Cabassi A et al (2014) Low serum ferroxidase I activity is associated with mortality in heart failure and related to both peroxynitrite-induced cysteine oxidation and tyrosine nitration of ceruloplasmin. Circ Res 114(11):1723–1732

    Article  CAS  PubMed  Google Scholar 

  169. Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75(2):291–302

    Article  CAS  PubMed  Google Scholar 

  170. Ahn B et al (2016) Diaphragm abnormalities in patients with end-stage heart failure: NADPH oxidase upregulation and protein oxidation. Front Physiol 7:686

    PubMed  Google Scholar 

  171. Parissis JT et al (2007) Effects of Levosimendan on circulating markers of oxidative and nitrosative stress in patients with advanced heart failure. Atherosclerosis 195(2):e210–e215

    Article  CAS  PubMed  Google Scholar 

  172. Cameron VA et al (2006) Angiotensin type-1 receptor A1166C gene polymorphism correlates with oxidative stress levels in human heart failure. Hypertension 47(6):1155–1161

    Article  CAS  PubMed  Google Scholar 

  173. Kobayashi S et al (2011) Urinary 8-hydroxy-2′-deoxyguanosine reflects symptomatic status and severity of systolic dysfunction in patients with chronic heart failure. Eur J Heart Fail 13(1):29–36

    Article  CAS  PubMed  Google Scholar 

  174. Masugata H et al (2013) Association between oxidative stress assessed by urinary 8-hydroxydeoxyguanosine and the cardiac function in hypertensive patients without overt heart disease. Clin Exp Hypertens 35(5):308–312

    Article  CAS  PubMed  Google Scholar 

  175. Susa T et al (2012) Urinary 8-hydroxy-2′-deoxyguanosine as a novel biomarker for predicting cardiac events and evaluating the effectiveness of carvedilol treatment in patients with chronic systolic heart failure. Circ J 76(1):117–126

    Article  CAS  PubMed  Google Scholar 

  176. Blankenberg S et al (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349(17):1605–1613

    Article  CAS  PubMed  Google Scholar 

  177. Caruso R et al (2007) Pre-operative redox state affects 1-month survival in patients with advanced heart failure undergoing left ventricular assist device implantation. J Heart Lung Transplant 26(11):1177–1181

    Article  PubMed  Google Scholar 

  178. Sam F et al (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 11(6):473–480

    Article  CAS  PubMed  Google Scholar 

  179. Hokamaki J et al (2004) Urinary biopyrrins levels are elevated in relation to severity of heart failure. J Am Coll Cardiol 43(10):1880–1885

    Article  CAS  PubMed  Google Scholar 

  180. Ellidag HY et al (2014) Oxidative stress and ischemia-modified albumin in chronic ischemic heart failure. Redox Rep 19(3):118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lonn E et al (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293(11):1338–1347

    Article  PubMed  Google Scholar 

  182. Thomson MJ, Frenneaux MP, Kaski JC (2009) Antioxidant treatment for heart failure: friend or foe? QJM 102(5):305–310

    Article  CAS  PubMed  Google Scholar 

  183. Yamauchi Y et al (2017) Is serum uric acid independently associated with left ventricular mass index, ejection fraction, and B-type natriuretic peptide among female and male cardiac patients? Int Heart J 58(4):562–569

    Article  CAS  PubMed  Google Scholar 

  184. Wannamethee SG et al (2018) Serum uric acid as a potential marker for heart failure risk in men on antihypertensive treatment: the British regional heart study. Int J Cardiol 252:187–192

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues whose work has not been discussed or cited owing to space limitations. TS is currently supported by FEDER funds via COMPETE (Portugal 2020) and by national funds through the Portuguese Foundation for Science and Technology (FCT) (project grant PTDC/MEC-CAR/32188/2017; SFRH/BPD/112005/2015). PG is funded by FEDER, Centro2020 Regional Operational Programme: CENTRO-01-0145-FEDER-000012-HealthyAging2020, COMPETE 2020-Operational Programme for Competitiveness & Internationalization; and FCT (strategic project UID/NEU/04539/2013; SFRH/BPD/111815/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sousa, T., Reina-Couto, M., Gomes, P. (2019). Role of Oxidative Stress in the Pathophysiology of Arterial Hypertension and Heart Failure. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_23

Download citation

Publish with us

Policies and ethics