Skip to main content

Role of Oxidative Stress in Myocardial Ischemia and Infarction

  • Chapter
  • First Online:

Abstract

Myocardial ischemia, ischemia-reperfusion (I/R) and myocardial infarction (MI) are major causes of morbidity and mortality in patients with ischemic heart disease in developed and developing countries worldwide. Much basic and translational research has elucidated how the determinants of myocardial O2 supply and demand modulate cardiac function and dysfunction and underscored how maintaining the balance between O2 supply and demand is essential in therapeutic efforts to interrupt the progression of myocardial ischemia, I/R and MI. Moving forward, while the timely restoration of myocardial blood flow and O2 supply has been shown to save muscle and lives, efforts to prevent I/R injury and reperfusion damage have been frustrating for nearly four decades despite recognition that the major culprit was the reactive oxygen species (ROS) and associated oxidative stress (OXS). Ongoing translational research is therefore focused on providing a broader understanding of the biology of OXS, identifying the key players in ROS regulation and dysregulation, and unravelling pathways and targets for intervention. Such data may allow future development of novel pharmacological treatments and strategies for the limitation and prevention of ROS-induced damage during myocardial ischemia, I/R and MI. If these efforts succeed, the clinical and socioeconomic impact will likely be tremendous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

ATP:

adenosine triphosphate

BH4:

tetrahydrobiopterin

CABG:

coronary artery bypass surgery

CaMKII:

Ca2+/calmodulin kinase II

cGMP:

cyclic guanosine monophosphate

CP:

creatine phosphate

DES:

drug-eluting stents

DTB:

door-to-balloon

ETC:

electron transfer chain

FACoA:

long-chain fatty-acyl-CoA

FAcarn:

long-chain fatty-acyl-carnitine

GIK:

glucose-insulin-potassium

GLP-1:

anti-diabetic glucagon-like peptide-1

GTP:

guanosine triphosphate

H2O2 :

hydrogen peroxide

HOCl:

hypochlorous acid

IL:

interleukin

I/R:

ischemia-reperfusion

IRA:

infarct-related artery

LAD:

left anterior descending

LC:

left circumflex

LV:

left ventricular

MI:

myocardial infarction

MPTP:

mitochondrial permeability transition pore

MRI:

magnetic resonance imaging

MVO2:

myocardial oxygen consumption

•NO:

nitric oxide

NOO- :

NO-derived peroxynitrite

NOS:

nitric oxide synthase

NOX:

NADPH oxidase

NSTEMI:

non-ST segment elevation MI

O2 :

oxygen

OFRs:

oxygen free radicals

OXS:

oxidative stress

•OH:

hydroxyl radical

PCI:

percutaneous coronary intervention

PDH:

pyruvate dehydrogenase

PKG:

phosphokinase G

PPARs:

peroxisome proliferator-activated receptors

PPCI:

primary PCI

PTP:

permeability transition pore

O2 :

superoxide anion radical

RCT:

randomized clinical trial

RIP3:

receptor-interacting protein 3

ROS:

reactive oxygen species

SERCA:

sarcoendoplasmic reticulum (SR) calcium transport ATPase

SOD:

superoxide dismutase

SR:

sarcoplasmic reticulum

STEMI:

ST-segment elevation MI

TAG:

triacyl glycerol

TNF:

tumor necrosis factor.

References

  1. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA et al (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American college of cardiology foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol 61:485–510

    Article  PubMed  Google Scholar 

  2. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H et al (2018) 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39:119–177

    Article  PubMed  Google Scholar 

  3. Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B et al (2017) Targeting reperfusion injury in patient with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941

    CAS  PubMed  Google Scholar 

  4. Selwyn AP (2010) Coronary physiology and pathophysiology. In: Brown DL, Jeremias A (eds) Textbook of cardiac intensive care, 2nd edn. Elsevier, Philadelphia, pp 69–72

    Chapter  Google Scholar 

  5. Herrick JB (1912) Clinical features of sudden obstruction of the coronary arteries. JAMA 9:2015–2022

    Article  Google Scholar 

  6. DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, Lang HT (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902

    Article  CAS  PubMed  Google Scholar 

  7. DeWood MA, Stifter WF, Simpson CS, Spores J, Eugster GS, Judge TP, Hinnen ML (1986) Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 315:417–423

    Article  CAS  PubMed  Google Scholar 

  8. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    Article  CAS  PubMed  Google Scholar 

  9. Thygesen K, Alpert JS, White HD, on behalf of the joint ESC/ACCF/AHA/WHF Task force for the redefinition of myocardial infarction (2007) Universal definition of myocardial infarction. Eur Heart J 28:2525–2538

    Article  PubMed  Google Scholar 

  10. Spriet LL (1990) Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol 70:157–165

    Article  Google Scholar 

  11. Hargreaves M (2000) Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 27:225–228

    Article  CAS  PubMed  Google Scholar 

  12. Neely JR, Morgan HE (1974) Relationship between carbohydrate metabolism and energy balance of heart muscle. Annu Rev Physiol 36:413–459

    Article  CAS  PubMed  Google Scholar 

  13. Neely JR, Feuvray D (1981) Metabolic products and myocardial ischemia. Am J Pathol 102:282–291

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Meissner A, Morgan JP (1995) Contractile dysfunction and abnormal Ca2+ modulation during post-schemic reperfusion in the rat heart. Am J Physiol 268:H100–H111

    CAS  PubMed  Google Scholar 

  15. Steenbergen C, Deleeuw G, Rich T, Williamson JR (1977) Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res 41:849–858

    Article  CAS  PubMed  Google Scholar 

  16. Weissler AM, Kruger FA, Baba N, Scarpelli DG, Leighton RF, Gallimore JK (1968) Role of anaerobic metabolism in the preservation of functional capacity and structure of anoxic myocardium. J Clin Invest 47:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henry PD, Sobel RE, Braunwald E (1974) Protection of hypoxic guinea pig hearts with glucose and insulin. Am J Physiol 226:309–313

    Article  CAS  PubMed  Google Scholar 

  18. Jennings RB (1969) Early phase of myocardial ischemic injury and infarction. Am J Cardiol 24:753–765

    Article  CAS  PubMed  Google Scholar 

  19. Weglicki WB, Owens K, Urschel CW, Serur JR, Sonnenblick EH (1972) Hydrolysis of myocardial lipids during acidosis and ischemia. In: Dhalla NS (ed) Recent advances in studies on cardiac structure and metabolism, vol 3, pp 781–793

    Google Scholar 

  20. Schaper J, Hehrlein F, Schlepper M, Thiedemann K-U (1977) Ultrastructural alterations during ischemia and reperfusion in human hearts during cardiac surgery. J Mol Cell Cardiol 9:175–189

    Article  CAS  PubMed  Google Scholar 

  21. Sobel BE, Corr PB, Robison AK, Goldstein RA, Witkowski FX, Klein MS (1978) Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest 62:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  23. Van der Vusse GJ, van Bilsen M, Glatz JF (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45:279–293

    Article  PubMed  Google Scholar 

  24. Braunwald E (1969) Thirteenth Bowditch Lecture: the determinants of myocardial oxygen consumption. Physiologist 12:65–93

    CAS  PubMed  Google Scholar 

  25. Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS (1967) Relief of angina pectoris by electrical stimulation of the carotid-sinus nerves. N Engl J Med 277:1278–1283

    Article  CAS  PubMed  Google Scholar 

  26. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J Jr, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82

    Article  CAS  PubMed  Google Scholar 

  27. Maroko PR, Braunwald E (1973) Modification of myocardial infarction size after coronary occlusion. Ann Intern Med 79:720–733

    Article  CAS  PubMed  Google Scholar 

  28. Braunwald E (1976) Symposium on protection of the ischemic myocardium. Circulation 53(Suppl 3):I-1–I-2

    CAS  Google Scholar 

  29. Maroko PR, Braunwald E (1976) Effects of metabolic and pharmacologic interventions on myocardial infarct size following coronary occlusion. Circulation 53(Suppl 3):I-162–I-168

    CAS  Google Scholar 

  30. Jugdutt BI, Lee SJ, Taylor RF (1976) Abolition of ischemic response to atrial pacing following aortocoronary bypass surgery. Circulation 54:225–229

    Article  CAS  PubMed  Google Scholar 

  31. Jugdutt BI, Lee SJ (1978) Intravenous therapy with propranolol in acute myocardial infarction: effects on changes in the S-T segment and hemodynamics. Chest 74:514–521

    Article  CAS  PubMed  Google Scholar 

  32. Fulton WFM (1965) The Coronary Arteries. Arteriography, microanatomy, and pathogenesis of obliterative coronary artery disease. Charles C. Thomas, Springfield

    Google Scholar 

  33. Schaper W (1971) The collateral circulation of the heart. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  34. Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1979) Myocardial infarction in the conscious dog: three-dimensional mapping of infarct, collateral flow and region at risk. Circulation 60:1141–1150

    Article  CAS  PubMed  Google Scholar 

  35. Jugdutt BI, Becker LC, Hutchins GM (1979) Early changes in collateral blood flow during myocardial infarction in conscious dogs. Am J Physiol 237:H371–H380

    CAS  PubMed  Google Scholar 

  36. Jugdutt BI, Hutchins GM, Bulkley BH, Pitt B, Becker LC (1979) Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation 59:734–743

    Article  CAS  PubMed  Google Scholar 

  37. Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1980) Salvage of ischemic myocardium by ibuprofen during infarction in the conscious dog. Am J Cardiol 46:74–82

    Article  CAS  PubMed  Google Scholar 

  38. Jugdutt BI, Becker LC, Hutchins GM, Bulkley BH, Reid PR, Kallman CH (1981) Effect of intravenous nitroglycerin on collateral blood flow and infarct size in the conscious dog. Circulation 63:17–28

    Article  CAS  PubMed  Google Scholar 

  39. Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1981) Dissimilar effects of prostacyclin, prostaglandin E1, and prostaglandin E2 on myocardial infarct size after coronary occlusion in conscious dogs. Circ Res 49:685–700

    Article  CAS  PubMed  Google Scholar 

  40. Blumenthal DS, Hutchins GM, Jugdutt BI, Becker LC (1981) Salvage of ischemic myocardium by dipyridamole in the conscious dog. Circulation 64:915–923

    Article  CAS  PubMed  Google Scholar 

  41. Ambrosio G, Becker LC, Hutchins GM, Weisman HF, Weisfeldt ML (1986) Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury. Circulation 74:1424–1143

    Article  CAS  PubMed  Google Scholar 

  42. Lieberman AN, Weiss JL, Jugdutt BI, Becker LC, Bulkley BH, Garrison JG et al (1981) Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746

    Article  CAS  PubMed  Google Scholar 

  43. Jugdutt BI, Sussex BA, Haraphongse M, Rossall RE (1983) Right ventricular involvement in transmural inferior wall infarction: two-dimensional echocardiographic and clinical correlations. Clin Invest Med 6:261–273

    CAS  PubMed  Google Scholar 

  44. Jugdutt BI, Sussex BA, Sivaram CA, Rossall RE (1984) Right ventricular infarction: two-dimensional echocardiographic evaluation. Am Heart J 107:505–518

    Article  CAS  PubMed  Google Scholar 

  45. Jugdutt BI, Sussex BA, Warnica JW, Rossall RE (1983) Persistent reduction in left ventricular asynergy in patients with acute myocardial infarction by intravenous infusion of nitroglycerin. Circulation 68:1264–1273

    Article  CAS  PubMed  Google Scholar 

  46. Jugdutt BI (1983) Myocardial salvage by intravenous nitroglycerin in conscious dogs: loss of beneficial effect with marked nitroglycerin-induced hypotension. Circulation 68:673–684

    Article  CAS  PubMed  Google Scholar 

  47. Jugdutt BI, Warnica JW (1988) Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion, and complications. Effect of timing, dosage, and infarct location. Circulation 78:906–919. Erratum in: Circulation 1989 79:1151

    Article  CAS  PubMed  Google Scholar 

  48. Jugdutt BI, Warnica JW (1989) Tolerance with low dose intravenous nitroglycerin therapy in acute myocardial infarction. Am J Cardiol 64:581–587

    Article  CAS  PubMed  Google Scholar 

  49. Jugdutt BI, Warnica JW (1987) Improved left ventricular function with metoprolol in acute myocardial infarction. Circulation 76:IV–276. (Abstract)

    Google Scholar 

  50. Jugdutt BI, Tymchak WJ, Burton JR (1991) Preservation of left ventricular geometry and function after late reperfusion and intravenous nitroglycerin in acute transmural myocardial infarction. Circulation 84:II–683. (Abstract)

    Google Scholar 

  51. Jugdutt BI, Tymchak WJ, Humen DP, Gulamhusein S, Tang SB (1992) Effect of thrombolysis and prolonged captopril and nitroglycerin on infarct size and remodeling in transmural myocardial infarction. J Am Coll Cardiol 19(Suppl A):205A. (Abstract)

    Google Scholar 

  52. Jugdutt BI, Menon V, Kumar D, Idikio H (2002) Vascular remodeling during healing after myocardial infarction in the dog model: effects of reperfusion, amlodipine and enalapril. J Am Coll Cardiol 39:1538–1545

    Article  PubMed  Google Scholar 

  53. Jugdutt BI, Idikio H, Uwiera RR (2007) Angiotensin receptor blockade and angiotensin-converting-enzyme inhibition limit adverse remodeling of infarct zone collagens and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction. Mol Cell Biochem 303:27–38

    Article  CAS  PubMed  Google Scholar 

  54. Palaniyappan A, Uwiera RR, Idikio H, Jugdutt BI (2009) Comparison of vasopeptidase inhibitor omapatrilat and angiotensin receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines, and ventricular remodeling during healing after reperfused myocardial infarction. Mol Cell Biochem 321:9–22

    Article  CAS  PubMed  Google Scholar 

  55. Jugdutt BI, Palaniyappan A, Uwiera RR, Idikio H (2009) Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Mol Cell Biochem 322:25–36

    Article  CAS  PubMed  Google Scholar 

  56. Jugdutt BI, Jelani A, Palaniyappan A, Idikio H, Uweira RE, Menon V et al (2010) Aging-related early changes in markers of ventricular and matrix remodeling after reperfused ST-segment elevation myocardial infarction in the canine model: effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341–351

    Article  CAS  PubMed  Google Scholar 

  57. Ubachs JFA, Sörensson P, Henrik E, Carlsson M, Jovinge S, Pernow J et al (2012) Myocardium at risk by magnetic resonance imaging: head-to-head comparison of T2-weighted imaging and contrast-enhanced steady-state free precession. Eur Heart J Cardiovasc Imaging 13:1008–1015

    Article  PubMed  PubMed Central  Google Scholar 

  58. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794

    Article  CAS  PubMed  Google Scholar 

  59. Jennings RB, Reimer KA (1991) The cell biology of acute myocardial ischemia. Annu Rev Med 42:225–246

    Article  CAS  PubMed  Google Scholar 

  60. Lowe JE, Reimer KA, Jennings RB (1978) Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol 90:363–379

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, post ischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  CAS  PubMed  Google Scholar 

  62. Rentrop KP, Feit F, Blanke H, Stecy P, Schneider R, Rey M et al (1984) Effects of intracoronary streptokinase and intracoronary nitroglycerin infusion on coronary angiographic patterns and mortality in patients with acute myocardial infarction. N Engl J Med 311:1457–1463

    Article  CAS  PubMed  Google Scholar 

  63. Simoons ML, Serruys PW, van den Brand M, Bär F, de Zwaan C, Res J et al (1985) Improved survival after early thrombolysis in acute myocardial infarction. A randomized trial conducted by the Interuniversity Cardiology Institute in the Netherlands. Lancet 2:578–582

    Article  CAS  PubMed  Google Scholar 

  64. Kennedy JW, Ritchie JL, Davis KB, Stadius ML, Maynard C, Fritz JK (1985) The Western Washington randomized trial of intracoronary streptokinase trial in acute myocardial infarction. N Engl J Med 312:1073–1078

    Article  CAS  PubMed  Google Scholar 

  65. Simoons ML, Serruys PW, van den Brand M, Res J, Verheugt FW, Krauss XH et al (1986) Early thrombolysis in acute myocardial infarction: reduction of infarct size, preservation of left ventricular function and improved survival. J Am Coll Cardiol 7:718–728

    Article  Google Scholar 

  66. Serruys PW, Simoons ML, Suryapranata H, Vermeer F, Wijns W, van den Brand M et al (1986) Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction. J Am Coll Cardiol 7:729–742

    Article  CAS  PubMed  Google Scholar 

  67. Grüntzig A (1978) Transluminal dilatation of coronary stenosis. Lancet 1:263

    Article  PubMed  Google Scholar 

  68. Grüntzig AR, Senning Å, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 301:61–68

    Article  PubMed  Google Scholar 

  69. de Feyter PJ, Suryapranata H, Serruys PW, Beatt K, van Domburg R, van den Brand M et al (1988) Coronary angioplasty for unstable angina: immediate and late results in 200 consecutive patients with identification of risk factors for unfavorable early and late outcome. J Am Coll Cardiol 12:324–333

    Article  PubMed  Google Scholar 

  70. Rentrop P, Blanke H, Karsch KR, Kreutzer H (1979) Initial experience with transluminal recanalization of the recently occluded infarct-related coronary artery in acute myocardial infarction – comparison with conventionally treated patients. Clin Cardiol 2:92–105

    Article  CAS  PubMed  Google Scholar 

  71. Meyer J, Merx W, Schweizer P, Erbel R, Kiesslich T, Dörr R et al (1982) Advantages of combining transluminal coronary angioplasty (PTCA) with selective coronary thrombolysis in acute infarction. Circulation 66:905–913

    Article  CAS  PubMed  Google Scholar 

  72. Hartzler GO, Rutherford BD, McConahay DR (1984) Percutaneous transluminal coronary angioplasty: application for acute myocardial infarction. Am J Cardiol 53:117C–121C

    Article  CAS  PubMed  Google Scholar 

  73. Suryapranata H, Serruys PW, de Feyter PJ, van den Brand M, Beatt K, van Domburg R et al (1988) Coronary angioplasty immediately after thrombolysis in 115 consecutive patients with acute myocardial infarction. Am Heart J 115:519–529

    Article  CAS  PubMed  Google Scholar 

  74. Gruentzig AR, King SB III, Schlumff SW (1987) Longterm follow-up after percutaneous transluminal coronary angioplasty.The early Zurich experience. N Engl J Med 316:1127–1132

    Article  CAS  PubMed  Google Scholar 

  75. Man J, Tymchak W, Jugdutt BI (2010) Adjunctive pharmacologic treatment for acute myocardial infarction. In: Brown DL, Jeremias A (eds) Textbook of cardiac intensive care, 2nd edn. Elsevier, Philadelphia, pp 1–72

    Google Scholar 

  76. Simari RD, Berger PB, Bell MR, Gibbons RJ, Holmes DR Jr (1994) Mayo Clin Proc 69:346–358

    Article  CAS  PubMed  Google Scholar 

  77. Welsh RC, Goldstein P, Adgey J, Verheugt F, Bestilny SA, Wallentin L, for the ASSENT 3 plus trial investigators et al (2004) Variations in pre-hospital fibrinolysis process of care: insights from the assessment of the safety and efficacy of a new thrombolytic 3 plus international acute myocardial infarction prehospital care survey. Eur J Emerg Med 11:134–140

    Article  PubMed  Google Scholar 

  78. Welsh RC, Chang W, Goldstein P, Adgey J, Granger CB, Verheugt FW et al (2005) Time to treatment and the impact of a physician on prehospital management of acute ST elevation myocardial infarction: insights from the ASSENT-3 PLUS trial. Heart 91:1400–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Terkelsen CJ, Lassen JF, Nørgaard BL, Gerdes JC, Poulsen SH, Bendix K et al (2005) Reduction of treatment delay in patients with ST-elevation myocardial infarction: impact of pre-hospital diagnosis and direct referral to primary percutanous coronary intervention. Eur Heart J 26:770–777

    Article  PubMed  Google Scholar 

  80. Crea F, Falk V, Filippatos G, Fox K, Huber K, Kastrati A et al (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the task force on the management of ST-Segment elevation acute myocardial infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945

    Article  CAS  PubMed  Google Scholar 

  81. Kushner FG, Hand M, Smith SC, King SB, Anderson JL, Antman EM et al (2009) 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol 54:2205–2241

    Article  PubMed  Google Scholar 

  82. Estevez-Loureiro R, Lopez-Sainz A, de Prado AP, Cuellas C, Santos RC, Alonzo-Orcajo N et al (2014) Timely reperfusion for ST-elevation myocardial infarction: effect of direct transfer to primary angioplasty on time delays and clinical outcomes. World J Cardiol 6:424–433

    Article  PubMed  PubMed Central  Google Scholar 

  83. De Luca G, Suryapranata H, Ottervanger JP, Antman EM (2004) Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation 109:1223–1225

    Article  PubMed  Google Scholar 

  84. Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ et al (2000) Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283:2941–2947

    Article  CAS  PubMed  Google Scholar 

  85. Serruys PW, Wijns W, van den Brand M, Mey S, Slager CJ, Schuurbiers JCH et al (1984) Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation 70:25–36

    Article  CAS  PubMed  Google Scholar 

  86. Wijns WW, Serruys PW, Slager CJ, Grimm J, Krayenbuehl HP, Hugenholtz PG et al (1986) Effect of coronary occlusion during percutaneous transluminal angioplasty in humans on left ventricular chamber stiffness and regional diastolic pressure-radius relations. J Am Coll CardioI 7:455–463

    Article  CAS  Google Scholar 

  87. Heusch G (1998) Stunning-great paradigmatic, but little clinical evidence. Basic Res Cardio 93:164–166

    Article  CAS  Google Scholar 

  88. Sheiban I, Tonni S, Benussi P, Martini A, Trevi GP (1993) Left ventricular dysfunction following transient ischemia induced by transluminal coronary angioplasty. Benficial effects of calcium antagonists against post-ischaemic myocardial stunning. Eur Heart J 14(suppl A):14–21

    Article  PubMed  Google Scholar 

  89. Yingzhong C, Lin C, Chunbin W (2016) Clinical effects of cyclosporine a on reperfusion injury in myocardial infarction: a meta-analysis of randomized controlled trials. SpringerPlus 5:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bulluck H, Yellon DM, Hausenloy DJ (2016) Reducing myocardial infarct size: challenges and future opportunities. Heart 102:341–348

    Article  CAS  PubMed  Google Scholar 

  91. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634

    Article  CAS  PubMed  Google Scholar 

  92. Reffelmann T, Kloner RA (2002) The “no-reflow” phenomenon: basic science and clinical correlates. Heart 87:162–168

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ducas A, Bartekova M, Dhalla NS (2015) Ischemia-reperfusion injury of the heart: moving forward with our knowledge. J Hear Health 1:1–10. https://doi.org/10.16966/2379-769X.110

    Article  Google Scholar 

  94. Rao V, Ivanov J, Weisel RD, Cohen G, Borger MA, Mickle DA (2001) Lactate release during reperfusion predicts low cardiac output syndrome after coronary bypass surgery. Ann Thorac Surg 71:1925–1930

    Article  CAS  PubMed  Google Scholar 

  95. Merante F, Mickle DA, Weisel RD, Li RK, Tumiati LC, al RV (1998) Myocardial aerobic metabolism is impaired in a cell culture model of cyanotic heart disease. Am J Physiol 275:H1673–H1681

    CAS  PubMed  Google Scholar 

  96. Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN et al (2016) American Heart Association council on basic cardiovascular sciences, council on clinical cardiology, and council on functional genomics and translational biology. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res 118:1960–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC (2017) Basic biology of oxidative stress and the cardiovascular system. Part 1 of 3-Part series. J Am Coll Cardiol 70:196–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bartesagh S, Radi (2018) Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol 14:618–625

    Article  CAS  Google Scholar 

  99. Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142:288–297

    Article  CAS  PubMed  Google Scholar 

  100. Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270:177–200

    Article  CAS  PubMed  Google Scholar 

  101. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in dogs. J Clin Invest 54:1496–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ambrosio G, Weisman HF, Mannisi JA, Becker LC (1989) Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation 80:1846–1861

    Article  CAS  PubMed  Google Scholar 

  103. Becker LC, Jeremy RW, Schaper J, Schaper W (1999) Ultrastructural assessment of myocardial necrosis occurring during ischemia and 3-h reperfusion in the dog. Am J Physiol 277:H243–H252

    Article  CAS  PubMed  Google Scholar 

  104. Jugdutt BI, Sawicki G (2004) AT1 receptor blockade alters metabolic, functional and structural proteins after reperfused myocardial infarction: detection using proteomics. Mol Cell Biochem 263:179–188. Erratum in: Mol Cell Biochem (2007) 300:269-270

    Article  CAS  PubMed  Google Scholar 

  105. Sawicki G, Menon V, Jugdutt BI (2004) Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Card Fail 10:442–449

    Article  CAS  PubMed  Google Scholar 

  106. Sawicki G, Jugdutt BI (2007) Valsartan reverses post-translational modifications of the delta-subunit of ATP synthase during in vivo canine reperfused myocardial infarction. Proteomics 7:2100–2110

    Article  CAS  PubMed  Google Scholar 

  107. Jugdutt BI, Menon V (2004) AT1 receptor blockade limits myocardial injury and upregulates AT2 receptors during reperfused myocardial infarction. Mol Cell Biochem 260:111–118

    Article  CAS  PubMed  Google Scholar 

  108. Jugdutt BI, Menon V (2004) Valsartan-induced cardioprotection involves angiotensin II type 2 receptor upregulation in dog and rat models of in vivo reperfused myocardial infarction. J Card Fail 10:74–82

    Article  CAS  PubMed  Google Scholar 

  109. Moe G, Konig A, Liu P, Jugdutt BI (2008) Selective type 1 angiotensin II receptor blockade attenuates oxidative stress and regulates angiotensin II receptors in the canine failing heart. Mol Cell Biochem 17:97–104

    Article  CAS  Google Scholar 

  110. Moudgil R, Menon V, Xu Y, Musat-Marcu S, Kumar D, Jugdutt BI (2001) Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts. J Hypertens 19:1121–1129

    Article  CAS  PubMed  Google Scholar 

  111. Ford WR, Khan MI, Jugdutt BI (1998) Effect of the novel angiotensin II type 1 receptor antagonist L-158,809 on acute infarct expansion and acute anterior myocardial infarction in the dog. Can J Cardiol 14:73–80

    CAS  PubMed  Google Scholar 

  112. Jugdutt BI (2011) Optimizing pharmacotherapy for limiting cardiovascular remodeling a matter of timing therapy to match biology. J Am Coll Cardiol 57:2029–2030

    Article  PubMed  Google Scholar 

  113. Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, Burwell LR et al (1994) Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89:1982–1991

    Article  CAS  PubMed  Google Scholar 

  114. Przyklenk K, Kloner RA (1989) “Reperfusion injury” by oxygen-derived free radicals? Effect of superoxide dismutase plus catalase, given at the time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature, and regional myocardial blood flow. Circ Res 674:86–96

    Article  Google Scholar 

  115. Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R et al (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 86:4695–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Verma S, Fedak PWM, Weisel RD, Butany J, Rao V, Maitland A et al (2002) Fundamentals of reperfusion Injury for the clinical cardiologist. Circulation 105:2332–2336

    Article  PubMed  Google Scholar 

  117. Cung TT, Morel O, Rioufol CG, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E et al (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031

    Article  CAS  PubMed  Google Scholar 

  118. Jugdutt BI, Jelani A (2008) Aging and defective healing, adverse remodeling, and blunted post-conditioning in the reperfused wounded heart. J Am Coll Cardiol 51:1399–1403

    Article  PubMed  Google Scholar 

  119. Przyklenk K, Maynard M, Darling CE, Whittaker P (2008) Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol 51:1393–1398

    Article  PubMed  Google Scholar 

  120. Jugdutt BI, Jelani A (2013) Chapter 27: Aging and markers of adverse remodeling after myocardial infarction. In: Jugdutt BI, Dhalla NS (eds) Cardiac remodeling: molecular mechanisms. Springer, New York, pp 487–512

    Chapter  Google Scholar 

  121. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  CAS  PubMed  Google Scholar 

  122. Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392

    Article  PubMed  PubMed Central  Google Scholar 

  123. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445

    Article  PubMed  PubMed Central  Google Scholar 

  124. Jugdutt BI (2002) Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev 7:391–405

    Article  CAS  PubMed  Google Scholar 

  125. Neumann F-J, Gick M (2018) Direct stenting in ST-segment elevation myocardial infarction: convenient, but not improving outcomes. Eur Heart J 39:2480–2483

    Article  PubMed  Google Scholar 

  126. Mahmood KO, Jolly SS, James S, Dzavik V, Cairns JA, Olivecrona CK et al (2018) Clinical impact of direct stenting and interaction with thrombus aspiration in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention: thrombectomy trialists collaboration. Eur Heart J 39:2472–2479

    Article  CAS  Google Scholar 

  127. Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na+-H+ exchange structure, regulation, and its role in heart disease. Circ Res 85:777–786

    Article  CAS  PubMed  Google Scholar 

  128. Karmazyn M, Moffat MP (1993) Role of Na+/H+ exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res 27:915–924

    Article  CAS  PubMed  Google Scholar 

  129. Churchill EN, Murriel CL, Chen CH, Mochly-Rosen D, Szweda LI (2005) Reperfusion-induced translocation of δPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circ Res 97:78–85

    Article  CAS  PubMed  Google Scholar 

  130. Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD et al (2011) Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem 286:11155–11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McCormack JC, Barr EL, Wolff AA, Lopaschuk GD (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic and repefused ischemic hearts. Circulation 93:135–142

    Article  CAS  PubMed  Google Scholar 

  132. Vitulano N, Ciaidella P, Gustapane M, Vitulano L, Pedicino A, Pelargonio D (2015) Ranolazine: beyond the treatment of chronic stable angina pectoris. Int J Clin Cardiol 2(4):1–7. ISSN: 2378-2951

    Article  Google Scholar 

  133. Codolosa JN, Acharjee S, Figueredo VM (2014) Update on ranolazine in the management of angina. Vasc Health Risk Manag 10:353–362

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385

    Article  CAS  PubMed  Google Scholar 

  135. Kornfeld O, Hwang S, Disatnik MH, Chen CH, Qvit N, Mochly-Rosen D (2015) Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res 116:1783–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180

    Article  CAS  PubMed  Google Scholar 

  137. Inserte J, Hernando V, Garcia-Dorado D (2012) Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res 96:23–31

    Article  CAS  PubMed  Google Scholar 

  138. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F et al (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182

    Article  CAS  PubMed  Google Scholar 

  139. Valls-Lacalle L, Barba I, Miro-Casas E, Alburquerque-Bejar JJ, Ruiz-Meana M, Fuertes-Agudo M et al (2016) Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc Res 109:374–384

    Article  CAS  PubMed  Google Scholar 

  140. Inserte J, Hernando V, Vilardosa U, Abad E, Poncelas-Nozal M, Garcia-Dorado D (2013) Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2:e005975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W et al (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. O’Connor PM, Gutterman DG (2010) Resurrecting hope for antioxidant treatment of cardiovascular disease. Focus on mitochondria. Circ Res 107:9–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Taegtmeyer H (1994) Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol 19:59–113

    Article  CAS  PubMed  Google Scholar 

  144. Chen YR, Zweir JL (2014) Cardiac mitochondria and reactive oxgen species generation. Circ Res 114:424–537

    Google Scholar 

  145. Schaper J, Meiser E, Stammler G (1985) Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56:377–391

    Article  CAS  PubMed  Google Scholar 

  146. Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG et al (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697

    Article  CAS  PubMed  Google Scholar 

  147. Opie LH, Sack MN (2002) Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning. J Mol Cell Cardiol 34:1077–1089

    Article  CAS  PubMed  Google Scholar 

  148. Sack MN (2009) Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 46:842–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Marín-García J, Damle S, Jugdutt BI, Moe GW (2012) Nuclear-mitochondrial cross-talk in global myocardial ischemia. A time-course analysis. Mol Cell Biochem 364:225

    Article  CAS  PubMed  Google Scholar 

  150. Ibáñez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471

    Article  PubMed  Google Scholar 

  151. Barrabes JA, Inserte J, Mirabet M, Quiroga A, Hernando V, Figueras J et al (2010) Antagonism of P2Y12 or GPIIb/IIIa receptors reduces plateletmediated myocardial injury after ischaemia and reperfusion in isolated rat hearts. Thromb Haemost 104:128–135

    Article  CAS  PubMed  Google Scholar 

  152. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H et al (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604

    Article  CAS  PubMed  Google Scholar 

  153. Ruiz-Meana M, Inserte J, Fernandez-Sanz C, Hernando V, Miro-Casas E, Barba I et al (2011) The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia. Basic Res Cardiol 106:1259–1268

    Article  CAS  PubMed  Google Scholar 

  154. Jugdutt BI (1997) Effect of reperfusion on ventricular mass, topography and function during healing of anterior infarction. Am J Physiol 272:H1205–H1211

    CAS  PubMed  Google Scholar 

  155. Jugdutt BI (2012) Ischemia/Infarction. Heart Fail Clin 8:43–51

    Article  PubMed  Google Scholar 

  156. Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak JD et al (2009) Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. Efficacy of FX06 in the prevention of myocardial reperfusion injury trial. J Am Coll Cardiol 53:720–729

    Article  CAS  PubMed  Google Scholar 

  157. Armstrong PW, Granger CB, Adams PX, Hamm C, Holmes D Jr, O’Neill WW (2007) Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297:43–51

    Article  CAS  PubMed  Google Scholar 

  158. Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part II. Circulation 104:3158–3167

    Article  CAS  PubMed  Google Scholar 

  159. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I et al (2005) Postconditioning the human heart. Circulation 112:2143–2148

    Article  PubMed  Google Scholar 

  161. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G et al (2008) Long-term benefit of postconditioning. Circulation 117:1037–1044

    Article  CAS  PubMed  Google Scholar 

  162. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S et al (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417

    Article  CAS  PubMed  Google Scholar 

  163. Yellon DM, Ackbarkhan AK, Balgobin V, Bulluck H, Deelchand A, Dhuny MR et al (2015) Remote ischemic conditioning reduces myocardial infarct size in STEMI patients treated by thrombolysis. J Am Coll Cardiol 65:2764–2765

    Article  PubMed  Google Scholar 

  164. Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T et al (2007) Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370:1483–1493

    Article  CAS  PubMed  Google Scholar 

  165. Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D’Agostino RB et al (2012) Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA 307:1925–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB et al (2012) Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart 33:1491–1499

    Article  CAS  Google Scholar 

  167. Lonborg J, Kelbaek H, Vejlstrup N, Botker HE, Kim WY, Holmvang L et al (2012) Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv 5:288–295

    Article  CAS  PubMed  Google Scholar 

  168. Woo JS, KimW HSJ, Kim JB, Kim SJ, Kim WS et al (2013) Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol 33:2252–2260

    Article  CAS  PubMed  Google Scholar 

  169. Chen WR, Hu SY, Chen YD, Zhang Y, Qian G, Wang J et al (2015) Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J 170:845–854

    Article  CAS  PubMed  Google Scholar 

  170. Lefer D, Jones S, Steenbergen C, Kukreja R, Guo Y, Tang X-L et al (2014) Sodium nitrite fails to limit myocardial infarct size: results from the CAESAR cardioprotection consortium. FASEB J 28:LB645

    Google Scholar 

  171. Siddiqi N, Neil C, Bruce M, MacLennan G, Cotton S, Papadopoulou S et al (2014) Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur Heart J 35:1255–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jones DA, Pellaton C, Velmurugan S, Rathod KS, Andiapen M, Antoniou S et al (2015) Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ Res 116:437–447

    Article  CAS  PubMed  Google Scholar 

  173. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543

    Article  CAS  PubMed  Google Scholar 

  174. Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D et al (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38:367–374

    Article  CAS  PubMed  Google Scholar 

  175. Skyschally A, Schulz R, Heusch G (2010) Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther 24:85–87

    Article  PubMed  PubMed Central  Google Scholar 

  176. Karlsson LO, Zhou AX, Larsson E, Astrom-Olsson K, Mansson C, Akyurek LM et al (2010) Cyclosporine does not reduce myocardial infarct size in a porcine ischemia-reperfusion model. J Cardiovasc Pharmacol Ther 15:182–189

    Article  CAS  PubMed  Google Scholar 

  177. Lim WY, Messow CM, Berry C (2012) Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: a systematic review and meta-analysis. Br J Pharmacol 165:2034–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  CAS  PubMed  Google Scholar 

  179. Ghaffari S, Kazemi B, Toluey M, Sepehrvand N (2013) The effect of prethrombolytic cyclosporine-A injection on clinical outcome of acute anterior ST-elevation myocardial infarction. Cardiovasc Ther 31:e34–e39

    Article  CAS  PubMed  Google Scholar 

  180. Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M et al (2016) Cyclosporine A in reperfused myocardial infarction. The multicenter, controlled ,open-label Cycle trial. J Amer Coll Cardiol 67:365–374

    Article  CAS  Google Scholar 

  181. Chiari P, Angoulvant D, Mewton N, Desebbe O, Obadia JF, Robin J et al (2014) Cyclosporine protects the heart during aortic valve surgery. Anesthesiology 121:232–238

    Article  CAS  PubMed  Google Scholar 

  182. Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA (2014) Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol 64:543–553

    Article  CAS  PubMed  Google Scholar 

  183. Shi J, Dai W, Hale SL, Brown DA, Wang M, Han X et al (2015) Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci 141:170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chakrabarti AK, Feeney K, Abueg C et al (2013) Rationale and design of the EMBRACE STEMI study: a phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. Am Heart J 165:509–514

    Article  CAS  PubMed  Google Scholar 

  185. Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A et al (2016) EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J 37:1296–1303

    Article  CAS  PubMed  Google Scholar 

  186. Ibanez B, Prat-Gonzalez S, Speidl WS, Vilahur G, Pinero A, Cimmino G et al (2007) Early metoprolol administration before coronary reperfusionresults in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115:2909–2916

    Article  CAS  PubMed  Google Scholar 

  187. Ibanez B, Macaya C, Sanchez-Brunete V, Pizarro G, Fernandez-Friera L, Mateos A et al (2013) Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation 128:1495–1503

    Article  CAS  PubMed  Google Scholar 

  188. Pizarro G, Fernandez-Friera L, Fuster V, Fernandez-Jimenez R, Garcia-Ruiz JM, Garcia-Alvarez A et al (2014) Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of metoprolol in cardioprotection during an acute myocardial infarction). J Am Coll Cardiol 63:2356–2362

    Article  CAS  PubMed  Google Scholar 

  189. Roolvink V, Rasoul S, Ottervanger JP, Dambrink JH, Lipsic E, van der Horst IC et al (2014) Rationale and design of a double-blind, multicenter, randomized, placebo-controlled clinical trial of early administration of intravenous beta-blockers in patients with ST-elevation myocardial infarction before primary percutaneous coronary intervention. EARLY beta-blocker administration before primary PCI in patients with ST-elevation myocardial infarction trial. Am Heart J 168:661–666

    Article  CAS  PubMed  Google Scholar 

  190. Schaller S, Paradis S, Ngoh GA, Assaly R, Buisson B, Drouot C et al (2010) TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition. J Pharmacol Exp Ther 333:696–706

    Article  CAS  PubMed  Google Scholar 

  191. Hansson MJ, Llwyd O, Morin D, De PD, Arnoux T, Gouarne C et al (2015) Differences in the profile of protection afforded by TRO40303 and mild hypothermia in models of cardiac ischemia/reperfusion injury. Eur J Pharmacol 760:7–19

    Article  CAS  PubMed  Google Scholar 

  192. Atar D, Arheden H, Berdeaux A, Bonnet JL, Carlsson M, Clemmensen P et al (2015) Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J 36:112–119

    Article  CAS  PubMed  Google Scholar 

  193. Bates E, Bode C, Costa M, Gibson CM, Granger C, Green C et al (2008) Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 117:886–896

    Article  PubMed  Google Scholar 

  194. Lincoff AM, Roe M, Aylward P, Galla J, Rynkiewicz A, Guetta V et al (2014) Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI randomized controlled trial. Eur Heart J 35:2516–2523

    Article  CAS  PubMed  Google Scholar 

  195. Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC et al (1987) Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145

    Article  CAS  PubMed  Google Scholar 

  196. Bulluck H, Sirker A, Loke YK, Garcia-Dorado D, Hausenloy DJ (2015) Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int J Cardiol 202:228–237

    Article  PubMed  Google Scholar 

  197. Karlsson J-E, El-Saadi W, Ali M, Puskar W, Skogvard P, Engvall JE et al (2015) Mangafodipir as a cardioprotective adjunct to reperfusion therapy: a feasibility study in patients with ST-segment elevation myocardial infarction. Eur Heart J 1:39–45

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jugdutt, B.I., Jugdutt, B.A. (2019). Role of Oxidative Stress in Myocardial Ischemia and Infarction. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_14

Download citation

Publish with us

Policies and ethics