Skip to main content

Oxidative Stress and Cardiovascular Risk and Prevention in Children and Adolescents

  • Chapter
  • First Online:

Abstract

The process of atherosclerosis may begin early in lifetime and develop for decades, until leading to manifest cardiovascular disease (CVD).

Efforts for early identification and management of predisposing factors for CVD for primordial and primary prevention, sustaining the “ideal cardiovascular health”, must start early in life.

Oxidative stress is among the first signs of endothelial activation and cardiometabolic alterations, and might serve in future as an early tool to predict risk of developing cardiometabolic and lifestyle-related diseases in childhood and adolescence and later in adulthood.

This review aims to discuss available data on all these aspects, with particular emphasis on the relationship between cardiometabolic risk and oxidative stress in children and adolescents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chung RJ, Touloumtzis C, Gooding H (2015) Staying young at heart: cardiovascular disease prevention in adolescents and young adults. Curr Treat Options Cardiovasc Med 17:61

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kelishadi R, Poursafa P (2014) A review on the genetic, environmental, and lifestyle aspects of the early-life origins of cardiovascular disease. Curr Probl Pediatr Adolesc Health Care 44:54–72

    Article  PubMed  Google Scholar 

  3. Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC Jr, Hayman LL, Lloyd-Jones D, Pandey DK, Sanchez EJ, Schram AP, Whitsel LP, American Heart Association Advocacy Coordinating Committee, Council on Cardiovascular Disease in the Young, Council on the Kidney in Cardiovascular Disease, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Clinical Cardiology, and Stroke Council (2011) Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association. Circulation 124:967–990

    Article  CAS  PubMed  Google Scholar 

  4. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc Pharmacol 100:1–19

    Article  CAS  Google Scholar 

  5. Graham P (2004) The end of adolescence. Oxford University Press, New York

    Google Scholar 

  6. Pahkala K, Hietalampi H, Laitinen TT, Viikari JS, Rönnemaa T, Niinikoski H, Lagström H, Talvia S, Jula A, Heinonen OJ, Juonala M, Simell O, Raitakari OT (2013) Ideal cardiovascular health in adolescence: effect of lifestyle intervention and association with vascular intima-media thickness and elasticity (the Special Turku Coronary Risk Factor Intervention Project for Children [STRIP] study). Circulation 127:2088e96

    Article  Google Scholar 

  7. Laitinen TT, Ruohonen S, Juonala M, Magnussen CG, Mikkilä V, Mikola H, Hutri-Kähönen N, Laitinen T, Tossavainen P, Jokinen E, Niinikoski H, Jula A, Viikari JS, Rönnemaa T, Raitakari O, Pahkala K (2017) Ideal cardiovascular health in childhood longitudinal associations with cardiac structure and function: the Special Turku Coronary Risk Factor Intervention Project (STRIP) and the Cardiovascular Risk in Young Finns Study (YFS). Int J Cardiol 230:304e9

    Article  Google Scholar 

  8. Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: the Bogalusa Heart Study. N Engl J Med 338:1650–1656. https://doi.org/10.1056/NEJM199806043382302

    Article  CAS  PubMed  Google Scholar 

  9. Barker DJP (1995) Fetal origins of coronary heart disease. BMJ 311:171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berenson GS, Srinivasan SR (2010) Cardiovascular risk in young persons: secondary or primordial prevention? Ann Intern Med 153:202–203

    Article  PubMed  Google Scholar 

  11. Lapinleimu H, Viikari J, Jokinen E, Salo P, Routi T, Leino A, Rönnemaa T, Seppänen R, Välimäki I, Simell O (1995) Prospective randomized trial in 1,062 infants of diet low in saturated fat and cholesterol. Lancet 345:471–476

    Article  CAS  PubMed  Google Scholar 

  12. Berenson GS, Wattigney WA, Tracy RE, Newman WP 3rd, Srinivasan SR, Webber LS, Dalferes ER Jr, Strong JP (1992) Atherosclerosis of the aorta and coronary arteries and cardiovascular risk factors in persons aged 6 to 30 years and studied at necropsy (the Bogalusa Heart Study). Am J Cardiol 70:851–858

    Article  CAS  PubMed  Google Scholar 

  13. Taylor SE, Way BM, Seeman TE (2011) Early adversity and adult health outcomes. Dev Psychopathol 23:939–954. https://doi.org/10.1017/S0954579411000411

    Article  PubMed  Google Scholar 

  14. Appleton AA, Buka SL, Loucks EB, Rimm EB, Martin LT, Kubzansky LD (2013) A prospective study of positive early-life psychosocial factors and favorable cardiovascular risk in adulthood. Circulation 127:905–912

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pulkki-Råback L, Elovainio M, Hakulinen C, Lipsanen J, Hintsanen M, Jokela M, Kubzansky LD, Hintsa T, Serlachius A, Laitinen TT, Pahkala K, Mikkilä V, Nevalainen J, Hutri-Kähönen N, Juonala M, Viikari J, Raitakari OT, Keltikangas-Järvinen L (2015) Cumulative effect of psychosocial factors in youth on ideal cardiovascular health in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation 131:245–253

    Article  PubMed  Google Scholar 

  16. Futterman LG, Lemberg L (1998) Fifty percent of patients with coronary artery disease do not have any of the conventional risk factors. Am J Crit Care 7:240–244

    CAS  PubMed  Google Scholar 

  17. Pedersen SS, von Känel R, Tully PJ, Denollet J (2017) Psychosocial perspectives in cardiovascular disease. Eur J Prev Cardiol 24:108–115

    Article  PubMed  Google Scholar 

  18. Patton GC, Bond L, Carlin JB, Thomas L, Butler H, Glover S, Catalano R, Bowes G (2006) Promoting social inclusion in schools: a group-randomized trial of effects on student health risk behavior and well-being. Am J Public Health 96:1582–1587

    Article  PubMed  PubMed Central  Google Scholar 

  19. O’Neil A, Scovelle AJ, Milner AJ, Kavanagh A (2018) Gender/sex as a social determinant of cardiovascular risk. Circulation 137:854–864

    Article  PubMed  Google Scholar 

  20. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  CAS  PubMed  Google Scholar 

  22. Mastorci F, Vassalle C, Chatzianagnostou K, Marabotti C, Siddiqui K, Eba AO, Mhamed SAS, Bandopadhyay A, Nazzaro MS, Passera M, Pingitore A (2017) Undernutrition and overnutrition burden for diseases in developing countries: the role of oxidative stress biomarkers to assess disease risk and interventional strategies. Antioxidants 6:41

    Article  CAS  PubMed Central  Google Scholar 

  23. Ho E, Galougahi KK, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Codoñer-Franch P, Valls-Bellés V, Arilla-Codoñer A, Alonso-Iglesias E (2011) Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res 158:369–384

    Article  CAS  PubMed  Google Scholar 

  25. Montero D, Walther G, Perez-Martin A, Roche E, Vinet A (2012) Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention. Obes Rev 13:441–455

    Article  CAS  PubMed  Google Scholar 

  26. McCrindle BW (2015) Cardiovascular consequences of childhood obesity. Can J Cardiol 31:124–130

    Article  PubMed  Google Scholar 

  27. Wang LX, Filipp SL, Urbina EM, Gurka MJ, DeBoer MD (2018) Longitudinal associations of metabolic syndrome severity between childhood and young adulthood: the Bogalusa Heart Study. Metab Syndr Relat Disord 16:208–214

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Giuseppe R, Cossellu G, Vigna L, Dicorato F, De Vita C, Venturelli G, Bamonti F, Maiavacca R, Farronato G (2015) Correlation between salivary and serum oxidized LDL levels: a pilot study on overweight/obese subjects. J Oral Pathol Med 44:884–887

    Article  CAS  PubMed  Google Scholar 

  29. Soukup M, Biesiada I, Henderson A, Idowu B, Rodeback D, Ridpath L, Bridges EG, Nazar AM, Bridges KG (2012) Salivary uric acid as a noninvasive biomarker of metabolic syndrome. Diabetol Metab Syndr 4:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meagher EA, FitzGerald GA (2000) Indices of lipid peroxidation in vivo: strengths and limitations. Free Radic Biol Med 28:1745–1750

    Article  CAS  PubMed  Google Scholar 

  31. Musiek ES, Yin H, Milne GL, Morrow JD (2005) Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 40:987–994

    Article  CAS  PubMed  Google Scholar 

  32. Tsimikas S (2006) Oxidized low-density lipoprotein biomarkers in atherosclerosis. Curr Atheroscler Rep 8:55–61

    Article  PubMed  Google Scholar 

  33. Mertens A, Holvoet P (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 15:2073–2084

    Article  CAS  PubMed  Google Scholar 

  34. Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31:916–922

    Article  CAS  PubMed  Google Scholar 

  35. Neufeld EJ, Mietus-Snyder M, Beiser AS, Baker AL, Newburger JW (1997) Passive cigarette smoking and reduced HDL cholesterol levels in children with high-risk lipid profiles. Circulation 96:1403–1407

    Article  CAS  PubMed  Google Scholar 

  36. Loffredo L, Zicari AM, Occasi F, Perri L, Carnevale R, Angelico F, Del Ben M, Martino F, Nocella C, De Castro G, Cammisotto V, Battaglia S, Duse M, Violi F (2018) Role of NADPH oxidase-2 and oxidative stress in children exposed to passive smoking. Thorax. pii: thoraxjnl-2017-211293

    Google Scholar 

  37. Kahraman FU, Torun E, Osmanoğlu NK, Oruçlu S, Özer ÖF (2017) Serum oxidative stress parameters and paraoxonase-1 in children and adolescents exposed to passive smoking. Pediatr Int 59(1):68–73

    Article  CAS  PubMed  Google Scholar 

  38. Kosecik M, Erel O, Sevinc E, Selek S (2005) Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 100:61–64

    Article  PubMed  Google Scholar 

  39. Stephensen CB, Marquis GS, Douglas SD, Wilson CM (2005) Immune activation and oxidative damage in HIV-positive and HIV-negative adolescents. J Acquir Immune Defic Syndr 38:180–190

    Article  CAS  PubMed  Google Scholar 

  40. Messner B, Bernhard D (2014) Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol 34:509–515

    Article  CAS  PubMed  Google Scholar 

  41. Bibiloni Mdel M, Pich J, Córdova A, Pons A, Tur JA (2012) Association between sedentary behaviour and socioeconomic factors, diet and lifestyle among the Balearic Islands adolescents. BMC Public Health 12:718

    Article  PubMed  Google Scholar 

  42. Dennis BA, Ergul A, Gower BA, Allison JD, Davis CL (2013) Oxidative stress and cardiovascular risk in overweight children in an exercise intervention program. Child Obes 9:15–21

    Article  PubMed  PubMed Central  Google Scholar 

  43. Llorente-Cantarero FJ, Gil-Campos M, Benitez-Sillero JD, Muñoz-Villanueva MC, Túnez I, Pérez-Navero JL (2012) Prepubertal children with suitable fitness and physical activity present reduced risk of oxidative stress. Free Radic Biol Med 53:415–420

    Article  CAS  PubMed  Google Scholar 

  44. Mager DR, Patterson C, So S, Rogenstein CD, Wykes LJ, Roberts EA (2010) Dietary and physical activity patterns in children with fatty liver. Eur J Clin Nutr 64:628–635

    Article  CAS  PubMed  Google Scholar 

  45. Liu M, Timmons BW (2016) The effect of acute exercise on neutrophil reactive oxygen species production and inflammatory markers in healthy prepubertal and adult males. Pediatr Exerc Sci 28:55–63

    Article  PubMed  Google Scholar 

  46. Van Horn L, Obarzanek E, Barton BA, Stevens VJ, Kwiterovich PO Jr, Lasser NL, Robson AM, Franklin FA Jr, Lauer RM, Kimm SY, Dorgan JF, Greenlick MR (2003) A summary of results of the Dietary Intervention Study in Children (DISC): lessons learned. Prog Cardiovasc Nurs 18:28–41

    Article  PubMed  Google Scholar 

  47. Mohn A, Catino M, Capanna R, Giannini C, Marcovecchio M, Chiarelli F (2005) Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program. J Clin Endocrinol Metab 90:2653–2658

    Article  CAS  PubMed  Google Scholar 

  48. Avloniti A, Chatzinikolaou A, Deli CK, Vlachopoulos D, Gracia-Marco L, Leontsini D, Draganidis D, Jamurtas AZ, Mastorakos G, Fatouros IG (2017) Exercise-induced oxidative stress responses in the pediatric population. Antioxidants (Basel) 6:6

    Article  CAS  Google Scholar 

  49. Zalavras A, Fatouros IG, Deli CK, Draganidis D, Theodorou AA, Soulas D, Koutsioras Y, Koutedakis Y, Jamurtas AZ (2015) Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. Oxidative Med Cell Longev 2015:283921

    Article  Google Scholar 

  50. Roberts CK, Chen AK, Barnard RJ (2007) Effect of a short-term diet and exercise intervention in youth on atherosclerotic risk factors. Atherosclerosis 191:98–106

    Article  CAS  PubMed  Google Scholar 

  51. Kelishadi R, Hashemi M, Mohammadifard N, Asgary S, Khavarian N (2008) Association of changes in oxidative and proinflammatory states with changes in vascular function after a lifestyle modification trial among obese children. Clin Chem 54:147–153

    Article  CAS  PubMed  Google Scholar 

  52. Li C, Feng F, Xiong X, Li R, Chen N (2017) Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity. J Sports Sci 35:663–668

    Article  PubMed  Google Scholar 

  53. Rothermel J, Reinehr T (2016) Metabolic alterations in paediatric GH deficiency. Best Pract Res Clin Endocrinol Metab 30:757–770

    Article  CAS  PubMed  Google Scholar 

  54. Sadowska-Krępa E, Kłapcińska B, Jagsz S, Nowara A, Szołtysek-Bołdys I, Chalimoniuk M, Langfort J, Chrapusta SJ (2017) High-dose testosterone enanthate supplementation boosts oxidative stress, but exerts little effect on the antioxidant barrier in sedentary adolescent male rat liver. Pharmacol Rep 69:673–678

    Article  CAS  PubMed  Google Scholar 

  55. Patel R, Shah G (2018) High-fat diet exposure from pre-pubertal age induces polycystic ovary syndrome (PCOS) in rats. Reproduction 155:141–151

    Article  PubMed  Google Scholar 

  56. Suzuki K, Takahashi M, Li CY, Lin SP, Tomari M, Shing CM, Fang SH (2015) The acute effects of green tea and carbohydrate coingestion on systemic inflammation and oxidative stress during sprint cycling. Appl Physiol Nutr Metab 40:997–1003

    Article  CAS  PubMed  Google Scholar 

  57. Paltoglou G, Fatouros IG, Valsamakis G, Schoina M, Avloniti A, Chatzinikolaou A, Kambas A, Draganidis D, Mantzou A, Papagianni M, Kanaka-Gantenbein C, Chrousos GP, Mastorakos G (2015) Antioxidation improves in puberty in normal weight and obese boys, in positive association with exercise-stimulated growth hormone secretion. Pediatr Res 78:158–164

    Article  PubMed  Google Scholar 

  58. Paltoglou G, Schoina M, Valsamakis G, Salakos N, Avloniti A, Chatzinikolaou A, Margeli A, Skevaki C, Papagianni M, Kanaka-Gantenbein C, Papassotiriou I, Chrousos GP, Fatouros IG, Mastorakos G (2017) Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55:925–933

    Article  CAS  PubMed  Google Scholar 

  59. Deng Y, Chang S (2007) Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Investig 87:1071–1076

    Article  CAS  PubMed  Google Scholar 

  60. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  61. Gordon-Dseagu VLZ, Shelton N, Mindell JS (2013) Epidemiological evidence of a relationship between Type-1 diabetes mellitus and cancer: a review of the existing literature. Int J Cancer 132:501–508

    Article  CAS  PubMed  Google Scholar 

  62. Longhese MP (2008) DNA damage response at functional and dysfunctional telomeres. Genes Dev 22:125–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kjaer TW, Faurholt-Jepsen D, Mehta KM, Christensen VB, Epel E, Lin J, Blackburn E, Wojcicki JM (2018) Shorter preschool, leukocyte telomere length is associated with obesity at age 9 in Latino children. Clin Obes 8:88–94

    Article  CAS  PubMed  Google Scholar 

  64. Brouilette SW, Moore JS, AD MM, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ, West of Scotland Coronary Prevention Study Group (2007) Telomere length, risk of coronary heart disease, and statin treatment in the west of Scotland primary prevention study: a nested case-control study. Lancet 369:107–114

    Article  CAS  PubMed  Google Scholar 

  65. Buxton JL, Walters RG, Visvikis-Siest S, Meyre D, Froguel P, Blakemore JAIF (2011) Childhood obesity is associated with shorter leukocyte telomere length. Clin Endocrinol Metab 96:1500–1505

    Article  CAS  Google Scholar 

  66. ChenW GJP, Kimura M, Brimacombe M, Cao X, Srinivasan SR, Berenson GS, Aviv A (2009) Leukocyte telomere length is associated with HDL cholesterol levels: the Bogalusa Heart Study. Atherosclerosis 205:620–625

    Article  CAS  Google Scholar 

  67. Walton RT, Mudway IS, Dundas I, Marlin N, Koh LC, Aitlhadj L, Vulliamy T, Jamaludin JB, Wood HE, Barratt BM, Beevers S, Dajnak D, Sheikh A, Kelly FJ, Griffiths CJ, Grigg J (2016) Air pollution, ethnicity and telomere length in east London schoolchildren: an observational study. Environ Int 96:41–47

    Article  CAS  PubMed  Google Scholar 

  68. Zalata A, Yahia S, El-Bakary A, Elsheikha HM (2007) Increased DNA damage in children caused by passive smoking as assessed by comet assay and oxidative stress. Mutat Res 629:140–147

    Article  CAS  PubMed  Google Scholar 

  69. Tice RR, Agurell E, Anderson D, Burlison B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J-C, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and an in vivo genetic toxicological testing. Environ Mol Mutagen 35:206–222

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Vassalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mastorci, F., Traghella, I., Sabatino, L., Pingitore, A., Ndreu, R., Vassalle, C. (2019). Oxidative Stress and Cardiovascular Risk and Prevention in Children and Adolescents. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_1

Download citation

Publish with us

Policies and ethics