Skip to main content

Ecology of Treeline Vegetation in Western Himalaya: Anthropogenic and Climatic Influences

  • Chapter
  • First Online:
Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change

Abstract

A landscape level survey of vegetation structure and composition was conducted along the treeline ecotone in Western Himalaya in the states of Uttarakhand and Himachal Pradesh. We used a combination of field surveys and remote sensing data (Landsat MSS and TM images) to quantify the extent and distribution of various classes of forests, forest cover, patterns of vegetation structure and composition and recent changes in forest cover along the treeline ecotone. Total area under the treeline ecotone (3000–4000 m) in these states comes to ca. 11587 km2, of which Himachal Pradesh has higher representation (6818.4 km2). In terms of extent, conifers (Abies and Pinus) occupy the largest cover followed by brown or Kharsu oak (Quercus semecarpifolia) and birch (Betula utilis). Mean tree density was 553 individuals ha−1 which ranged between 440 and 690 individuals ha−1. Average elevation of the treeline was approximately 3615 m above mean sea level, and the maximum altitude of tree growth was 4200 m. Time series analysis of remote sensing data reveals that there has been no altitudinal shift in the upper treeline during the last 40 years, although forest canopy cover has increased or decreased significantly within a protected area and outside, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari BS, Rawat YS, Singh SP (1995) Structure and function of high altitude forests of central Himalaya I. Dry matter dynamics. Ann Bot 72:237–248

    Article  Google Scholar 

  • Adhikari BS, Rawat GS, Rai ID, Bhattacharyya S, Bharti RR (2012) Ecological assessment of timberline ecotone in Western Himalaya with special reference to climate change and anthropogenic pressures. Unpublished Report, Wildlife Institute of India, Dehradun

    Google Scholar 

  • Arno SF (1984) Timberline. Mountain and Arctic forest frontiers. Mountaineers Books, Seattle

    Google Scholar 

  • Bharti RR, Adhikari BS, Rawat GS (2012) Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. Int J Appl Earth Obs 18:472–479

    Article  Google Scholar 

  • Bharti RR, Rai ID, Adhikari BS, Rawat GS (2011) Timberline change detection using topographic map and satellite imagery: a critique. Trop Ecol 52(1):133–137

    Google Scholar 

  • Cairns D, Moen J (2004) Herbivory influence tree lines. J Ecol 92:1019–1024

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climate Change 63:181–200

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2016) Dendroclimatic response of Abies spectabilis from the treeline ecotone of Barun valley, eastern Nepal Himalaya. J For Res 27:1163–1170

    Google Scholar 

  • Crawford RMM (1997) Consequences of climatic warming for plants of the northern and polar regions of Europe. Flora Colon 5(6):65–78

    Google Scholar 

  • Cullen LE, Stewart GH, Duncan RP, Palmer JG (2001) Disturbance and climate warming influences in New Zealand Nothofagus tree-line population dynamics. J Ecol 8:1061–1071

    Article  Google Scholar 

  • Curtis JT, McIntosh RP (1950) The interrelation of certain analytical and synthetic phytosociological character. Ecology 31:434–455

    Article  Google Scholar 

  • Däniker A (1923) Biologische Studien über Baum- und Waldgrenzen, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Vierteljahresschr Naturforschenden Ges Zürich 68:1–102

    Google Scholar 

  • Ellenberg H (1966) Leben und Kampf an den Baumgrenzen der Erde. Naturwiss Rundsch 19:133–139

    Google Scholar 

  • Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in Western Himalaya, India. Curr Sci 85:1135–1136

    Google Scholar 

  • Fraser RH, Olthof I, Carriere M, Deschamps A, Pouliot D (2011) Detecting long-term changes to vegetation in Northern Canada using the Landsat satellite image archive. Environ Res Lett 6. https://doi.org/10.1088/1748-9326/6/4/045502

    Article  Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Carrer M (2017) Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia 41:44–56

    Article  Google Scholar 

  • Garkoti SC, Singh SP (1994) Nutrient cycling in the three central Himalayan forests ranging from close canopied to open canopied treeline forests, India. Arct Alp Res 26:339–348

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment. J Veg Sci 18:571–582

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    Article  CAS  PubMed  Google Scholar 

  • Griggs RF (1937) Timberlines as indicator of climatic trends. Science 85(2202):251–255

    Article  CAS  Google Scholar 

  • Holtmeier FK (2003) Mountain timberlines– ecology, patchiness, and dynamics advances in global change research, vol 14. Kluwer Academic, Dordrecht

    Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2007) Treeline advance driving processes and adverse factors. Landscape Online 1:1–33. https://doi.org/10.3097/L0.200701

    Article  Google Scholar 

  • Jeffrey GM (2001) Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. J Biogeogr 28:967–976

    Google Scholar 

  • Kershaw KA (1973) Quantitative and dynamic plant ecology. Edward Arnold Ltd, London, p 308

    Google Scholar 

  • Körner C (1998a) A re-assessment of high elevation treeline position and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C (1998b) World-wide positions of alpine treelines and their causes. In: Beniston M (ed) The impacts of climate variability on forests. Springer, Heidelberg, pp 221–229

    Chapter  Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–7

    Article  Google Scholar 

  • Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, Basel. 220p

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Kullman L (1998) Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312–321

    Google Scholar 

  • Kullman L (2001) 20th-century climate warming and tree limit rise in the Southern Scandes of Sweden. Ambio 30:72–80

    Article  CAS  Google Scholar 

  • Larsson H (1993) Linear regressions for canopy cover estimation in acacia woodlands using Landsat-TM, Landsat-MSS and SPOT HRV XS data. Int J Remote Sens 14:2129–2136

    Article  Google Scholar 

  • Lloyd AH, Graumlich LJ (1997) Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78(4):1199–1210

    Article  Google Scholar 

  • Mark AF, Proter S, Piggot JJ, Michel P, Maegli T, Dickinson KJM (2008) Altitudinal pattern of vegetation, flora, life forms, and environment in the alpine zone of the fiord ecological region, New Zealand. New Zeal J Bot 46:205–237

    Article  Google Scholar 

  • Masek JG (2001) Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. J Biogeogr 28:967–976

    Article  Google Scholar 

  • Miehe G, Miehe S (1994) Zuroberen Waldgrenze in tropischen Gebirgen. Phytocoenologia 24:53–110

    Article  Google Scholar 

  • Misra R (1968) Ecology work book. Oxford and IBH Publ, New Delhi

    Google Scholar 

  • Malanson GP (1997) Effects of feedbacks and seed rain on ecotone patterns. Landsc Ecol 12:27–38

    Article  Google Scholar 

  • Motta R, Nola P (2001) Growth trends and dynamics in subalpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. J Veg Sci 12:219–230

    Article  Google Scholar 

  • Muller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Ohsawa M (1990) An interpretation of latitudinal patterns of forest limits in South and East Asian mountains. J Ecol 78:326–339

    Article  Google Scholar 

  • Padma TV (2014) Himalayan plants seek cooler climes. Nat Lett 512:359

    Article  CAS  Google Scholar 

  • Panigrahy S, Anitha D, Kimothi MM, Singh SP (2010) Timberline change detection using topographic map and satellite imagery. Trop Ecol 51(1):87–91

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32:14–20

    Article  Google Scholar 

  • Peterson DL (1998) Climate limiting factors and environmental change in high altitude forests of Western North America. In: The impact of climate variability in forests. Springer, Heidelberg, pp 198–208

    Google Scholar 

  • Rai ID (2012) Ecological Attributes of timberline vegetation with special reference to climatic variability in Kedarnath Wildlife Sanctuary, Western Himalaya, Ph.D Thesis, Kumaun University, Nainital

    Google Scholar 

  • Rai ID, Adhikari BS, Rawat GS, Bargali K (2012) Community structure along timberline ecotone in relation to micro-topography and disturbances in Western Himalaya. Not Sci Biol 4(2):41–52

    Article  Google Scholar 

  • Rawal RS, Dhar U (1997) Sensitivity of timberline flora in Kumaon Himalaya, India: conservation implications. Arct Alp Res 29:112–121

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Ecological studies 62. Springer, Berlin

    Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: (Broll, G. and B. Keplin eds.) mountain ecosystems. Studies in treeline ecology. Springer, Berlin/Heidelberg/New York, pp 275–354

    Google Scholar 

  • Schweinfurth U (1957) Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. Bonner Geogr Abh 20

    Google Scholar 

  • Shrestha BB, Shimire B, Lekhak HD, Jha PK (2007) Regeneration of treeline Birch (Betula utilis D.Don) forest in a Trans-Himalayan Dry Valley in Central Nepal. Mt Res Dev 27(3):259–267

    Article  Google Scholar 

  • Shugart HH, French NHF, Kasischke ES, Slawski JJ, Dull CW, Shuchman RA, Mwangi J (2001) Detection of vegetation change using reconnaissance imagery. Glob Chang Biol 7:247–252

    Article  Google Scholar 

  • Singh G, Rawat GS, Verma D (2010) Comparative study of fuelwood consumption by villagers and seasonal “Dhaba owners” in the tourist affected regions of Garhwal Himalaya, India. Energy Policy 38:1895–1899

    Article  Google Scholar 

  • Singh JS, Singh SP (1992) Forests of Himalaya. Structure, functioning and impact of man. Gyanodaya Prakashan, Nainital

    Google Scholar 

  • Singh SP (1998) Chronic disturbance, a principal cause of environmental degradation in developing countries. Environ Conserv 25:1–2

    Article  CAS  Google Scholar 

  • Singh NP, Singh DK, Uniyal BP (2002) Flora of Jammu & Kashmir, vol 1. Botanical Survey of India, Dehra Dun

    Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102(4):559–562

    Google Scholar 

  • Thakur AK, Singh G, Singh S, Rawat GS (2011) Impact of pastoral practices on forest cover and regeneration in the outer fringes of Kedarnath Wildlife Sanctuary, Western Himalaya. J Indian Soc Remote Sens 39(1):127–134

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. In: Tree existence at high altitudes with special references to the European Alps, ecological studies, vol 31. Springer, Berlin

    Chapter  Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5(3):3–18

    Google Scholar 

  • Wardle P (1993) Causes of alpine timberline: a review of the hypotheses. In: Alden J, Mastrantonio L, Odum S (eds) Forest development in cold climates. Plenum Press, New York, pp 89–103

    Chapter  Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 371–402

    Google Scholar 

  • Weiser J, Tuasz M (2007) Current concepts for tree life limitation at the upper timberline. In: Wieser G, Tauz M (eds) Tree at their upper limit. Springer, New York, pp 1–18

    Chapter  Google Scholar 

  • Xu B, Gong P, Pu R (2003) Crown closure estimation of oak savannah in a dry season with Landsat TM imagery: comparison of various indices through correlation analysis. Int J Remote Sens 24:1811–1822

    Article  Google Scholar 

  • Yadava AK, Sharma YK, Dubey B, Singh J, Singh V, Bhutiyani MR, Yadav RR, Misra KG (2016) Altitudinal treeline dynamics of Himalayan Pine in Western Himalaya, India. Quat Int. https://doi.org/10.1016/j.quaint.2016.07.032

    Article  Google Scholar 

  • Zhang Y, Xu M, Adams J, Wang X (2009) Can Landsat imagery detect tree line dynamics? Int J Remote Sens 30:1327–1340

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the director(s) of Wildlife Institute of India and Uttarakhand Space Application Centre, Dehradun, for the institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, I.D., Singh, G., Pandey, A., Rawat, G.S. (2019). Ecology of Treeline Vegetation in Western Himalaya: Anthropogenic and Climatic Influences. In: Garkoti, S., Van Bloem, S., Fulé, P., Semwal, R. (eds) Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-8249-9_9

Download citation

Publish with us

Policies and ethics