Skip to main content

Invasive Species and Their Impact on Tropical Forests of Central India: A Review

  • Chapter
  • First Online:
Book cover Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change

Abstract

Tropical forests are the richest biodiversity hotspots and are under immense natural and anthropogenic pressures that lead to biodiversity loss. One such cause is alien plant invasion that alters the native forest stand structure and composition and disrupts the vital ecosystem functions. Central India, which mainly spans across the three states, viz. Madhya Pradesh, Chhattisgarh and some parts of Maharashtra, is well-known for its sprawling tropical deciduous forests, which are also no less immune to the present-day pressures, including the plant invasion. Alien invasive plants arrive via several pathways and possess unique traits that help them to surpass the barriers in the new habitats, where many influential factors might operate upon them. Once established, they may profoundly impact the invaded ecosystem. Most of the studies from Central India have been focused on floristics, forest structure, impact of disturbances, etc., and relatively few studies have addressed plant invasion. Overall, there are 179 invasive taxa in Central India, mostly from the Asteraceae (17.3%) and Fabaceae (14.5%) families. Majority of them are from Tropical America (52%), and most are herbs (69%). An outline of the most common top ten Central Indian invaders has been presented. Climate change might influence invasive plants, and constant monitoring and modelling is required to understand invasive species dynamics for effective management. Invasive alien species are to be tended with extreme caution and smart and novel approaches of putting them to use might help in better management for controlling them. This review will also provide a conceptual basis for improving our general understanding on invasive species and their impact on tropical forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams VM, Petty AM, Douglas MM, Buckley YM, Ferdinands KB, Okazaki T, Ko DW, Setterfield SA (2015) Distribution demography and dispersal model of spatial spread of invasive plant populations with limited data. Method Ecol Evol 6(7):782–794

    Article  Google Scholar 

  • Adhikari D, Tiwary R, Barik SK (2015) Modelling hotspots for invasive alien plants in India. PLoS One 10(7):pe0134665

    Article  CAS  Google Scholar 

  • Agarwala M, DeFries RS, Qureshi Q, Jhala YV (2016a) Factors associated with long-term species composition in dry tropical forests of Central India. Environ Res Lett 11(10):p105008

    Article  Google Scholar 

  • Agarwala M, DeFries RS, Qureshi Q, Jhala YV (2016b) Changes in the dry tropical forests in Central India with human use. Reg Environ Change 16(1):5–15

    Article  Google Scholar 

  • Albrecht M, Padrón B, Bartomeus I, Traveset A (2014) Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. P Roy Soc Lond B Biol 281(1788):p20140773

    Article  Google Scholar 

  • Albrecht M, Ramis MR, Traveset A (2016) Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biol Invasions 18(7):1801–1812

    Article  Google Scholar 

  • Alemayehu K, Desalegn T (2016) Antibiotic effects of Argemone mexicana (Papaveraceae) against field crops and pathogens causing mastitis in dairy cattle in three districts of Amhara region Ethiopia. J Adv Biol Biotech 5(1):1–9

    Article  Google Scholar 

  • Allen JM, Bradley BA (2016) Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. Biol Cons 203:306–312

    Article  Google Scholar 

  • Anonymous (2014) MoEF (Ministry of Environment Forests and Climate Change Government of India). Ecosystems Service Improvement Project (GEF Assisted) Environment and Social Management Framework and Tribal Development Plan, p 1–98

    Google Scholar 

  • Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15(4):263–1272

    Article  Google Scholar 

  • Aslan C, Rejmanek M (2012) Native fruit traits may mediate dispersal competition between native and non-native plants. NeoBiota 12:1–24

    Article  Google Scholar 

  • Aung T, Koike F (2015) Identification of invasion status using a habitat invasibility assessment model: the case of Prosopis species in the dry zone of Myanmar. J Arid Environ 120:87–94

    Article  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plants: from genes to invasion. Science 301:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after long distance dispersal. Evolution 9:347–349

    Google Scholar 

  • Banerjee AK, Dewanji A (2017a) Native exotic relationships in plant communities: the role of exotic dominance in framing community composition. Ecol Res 32(5):653–665

    Article  Google Scholar 

  • Banerjee AK, Dewanji A (2017b) Role of intraspecific trait plasticity in Mikania micrantha Kunth growth and impact of its abundance on community composition. J Asia-Pac Biodiv 10(2):237–249

    Google Scholar 

  • Blackburn TM, Lockwood JL, Cassey P (2009) Avian invasions: the ecology and evolution of exotic birds, vol 1. Oxford University Press, Oxford

    Book  Google Scholar 

  • Blackburn TM, PyÅ¡ek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JR, Richardson DM (2011) A proposed unified framework for Biological Invasions. Trends Ecol Evol 26(7):333–339

    Article  PubMed  Google Scholar 

  • Blumenthal D (2005) Interrelated causes of plant invasion. Science 310(5746):243–244

    Article  CAS  PubMed  Google Scholar 

  • Bongard C (2012) A review of the influence of root-associating fungi and root exudates on the success of invasive plants. NeoBiota 14:21–45

    Article  Google Scholar 

  • Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15(6):1511–1521

    Article  Google Scholar 

  • Bradley BA, Wilcove DS, Oppenheimer M (2010) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12(6):1855–1872

    Article  Google Scholar 

  • Bruckman D, Campbell DR (2016) Timing of invasive pollen deposition influences pollen tube growth and seed set in a native plant. Biol Invasions 18(6):1701–1711

    Article  Google Scholar 

  • Buckley YM (2017) Invasion ecology: Unpredictable arms race in a jam jar. Nature Ecol Evol 1:p0028

    Google Scholar 

  • Burns JH (2006) Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. Ecol Appl 16(4):1367–1376

    Article  PubMed  Google Scholar 

  • Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97(3):449–458

    Article  Google Scholar 

  • CABI’s Invasive Species Compendium, http://wwwcabiorg/isc/

    Google Scholar 

  • Cabra-Rivas I, Saldaña A, Castro-Díez P, Gallien L (2016) A multi-scale approach to identify invasion drivers and invaders’ future dynamics. Biol Invasions 18(2):411–426

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290(5491):521–523

    Article  CAS  PubMed  Google Scholar 

  • Caplat P, Nathan R, Buckley YM (2012) Seed terminal velocity wind turbulence and demography drive the spread of an invasive tree in an analytical model. Ecology 93(2):368–377

    Article  PubMed  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers distributions 15(1):22–40

    Article  Google Scholar 

  • Catford JA, Baumgartner JB, Vesk PA, White M, Buckley YM, McCarthy MA (2016) Disentangling the four demographic dimensions of species invasiveness. J Ecol 104(6):1745–1758

    Article  Google Scholar 

  • Champion SH, Seth SK (1968) A revised survey of the forest types of India. Government of India Publication, New Delhi

    Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC (2000) Consequences of changing biodiversity. Nature 405(6783):234–242

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee R (2015) Impact of Lantana camara in the Indian society. Int J Environ 4(2):348–354

    Article  Google Scholar 

  • Chaubey OP, Sharma A, Krishnamurthy G (2015) Plant diversity edaphic status and population structure in different forest types of Madhya Pradesh and Chhattisgarh states in India. Int J Biosci Biotech 7(2):115–124

    Google Scholar 

  • Chauhan MS, Sharma A, Phartiyal B, Kumar K (2013) Holocene vegetation and climatic variations in central India: a study based on multiproxy evidences. J Asian Earth Sci 77:45–58

    Article  Google Scholar 

  • Chen BM, Li S, Liao HX, Peng SL (2017) Do forest soil microbes have the potential to resist plant invasion? A case study in Dinghushan Biosphere Reserve (South China). Acta Oecol 81:1–9

    Article  CAS  Google Scholar 

  • Chhattisgarh Forest Department, http://wwwcgforestcom/English/Introductionhtm

    Google Scholar 

  • Chikuruwo C, Masocha M, Murwira A, Ndaimani H (2017) Predicting the suitable habitat of the invasive Xanthium strumarium L in southeastern Zimbabwe. Appl Ecol Environ Res 15(1):17–32

    Article  Google Scholar 

  • Clout MN, Williams PA (2009) Invasive species management: A handbook of principles and techniques. Oxford University Press, Oxford

    Google Scholar 

  • Colautti RI, Bailey SA, Van Overdijk CD, Amundsen K, MacIsaac HJ (2006) Characterised and projected costs of nonindigenous species in Canada. Biol Invasions 8(1):45–59

    Article  Google Scholar 

  • Colautti R, Parker JD, Cadotte MW, PyÅ¡ek P, Brown CS, Sax D, Richardson D (2014) Quantifying the invasiveness of species. NeoBiota 21:7–27

    Article  Google Scholar 

  • Courchamp F, Fournier A, Bellard C, Bertelsmeier C, Bonnaud E, Jeschke JM, Russell JC (2017) Invasion biology: Specific problems and possible solutions. Trends Ecol Evol 32(1):13–22

    Article  PubMed  Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of Biological Invasions in slow-motion. Ecoscience 12(3):316–329

    Article  Google Scholar 

  • Csecserits A, Botta-Dukát Z, Kröel-Dulay G, Lhotsky B, Ónodi G, Rédei T, Szitár K, Halassy M (2016) Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric Ecosyst Environ 226:88–98

    Article  Google Scholar 

  • Daehler CC (1998) The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biol Cons 84(2):167–180

    Article  Google Scholar 

  • D’Antonio CM, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10(4):703–713

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses the grass/fire cycle and global change. Ann Rev Ecol Syst 23(1):63–87

    Article  Google Scholar 

  • Darwin C (1859) On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. John Murray London

    Google Scholar 

  • Das M, Khanna SK (1997) Clinicoepidemiological, toxicological and safety evaluation studies on argemone oil. Crit Rev Toxicol 27(3):273–297

    Article  CAS  PubMed  Google Scholar 

  • Dawson W, Moser D, van Kleunen M, Kreft H, Pergl J, Pysek P, Weigelt P, Winter M, Lenzner B, Blackburn TM, Dyer EE, Cassey P, Scrivens SL, Economo EP, Guénard B, Capinha C, Seebens H, García-Díaz P, Nentwig W, García-Berthou E, Casal C, Mandrak NE, Fuller P, Meyeer C, Essl F (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecol Evol 1:0186

    Article  Google Scholar 

  • Day M (2012) Mikania micrantha Kunth: mile-a-minute Biological Control of weeds in Australia, pp 368–372

    Google Scholar 

  • Delivering Alien Invasive Species Inventories for Europe (DAISIE), http://wwweurope-aliensorg/

    Google Scholar 

  • Deshmukh UB, Shende MB, Rathor OS (2015) Invasive Alien angiospermic plants from Chamorshi Tahsil of Gadchiroli District of Maharashtra, India. Int Res J Biol Sci 4(12):40–45

    Google Scholar 

  • Dhileepan K, Senaratne KADW (2009) How widespread is Parthenium hysterophorus and its biological control agent Zygogramma bicolorata in South Asia? Weed Res 49(6):557–562

    Article  Google Scholar 

  • Dickie I, Bennett B, Burrows L, Nuñez M, Peltzer D, Porté A, Richardson DM, Rejmánek M, Rundel P, van Wilgen B (2014) Conflicting values: ecosystem services and invasive tree management. Biol Invasions 16:705–719

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20(9):470–474

    Article  PubMed  Google Scholar 

  • Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14(9):1765–1778

    Article  Google Scholar 

  • Dzikiti S, Ntshidi Z, Le Maitre DC, Bugan RDH, Mazvimavi D, Schachtschneider K, Jovanovic NZ, Pienaar HH (2017) Assessing water use by Prosopis invasions and Vachellia karroo trees: Implications for groundwater recovery following alien plant removal in an arid catchment in South Africa. Forest Ecol Manag 398:153–163

    Article  Google Scholar 

  • Earth’s CO2 https://wwwco2earth/

    Google Scholar 

  • Egawa C (2017) Wind dispersal of alien plant species into remnant natural vegetation from adjacent agricultural fields. Global Ecol Cons 11:33–41

    Google Scholar 

  • Ehler LE (1998) Invasion Biology and Biological Control. Biol Control 13(2):127–133

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97(13):7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Metheun, London

    Book  Google Scholar 

  • Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilà M (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci 108(1):203–207

    Article  CAS  PubMed  Google Scholar 

  • Essl F, Bacher S, Blackburn TM, Booy O, Brundu G, Brunel S, Cardoso AC, Eschen R, Gallardo B, Galil B, García-Berthou E (2015) Crossing frontiers in tackling pathways of Biological Invasions. BioScience 65(8):769–782

    Article  Google Scholar 

  • European Alien Species Information Network (EASIN), https://easinjrceceuropaeu/

    Google Scholar 

  • Ewel JJ (1977) Differences between wet and dry successional tropical ecosystems. Geo Eco Trop 1(2):103–117

    Google Scholar 

  • Feng YL, Fu GL, Zheng YL (2008) Specific leaf area relates to the differences in leaf construction cost photosynthesis nitrogen allocation and use efficiencies between invasive and noninvasive alien congeners. Planta 228(3):383–390

    Article  CAS  PubMed  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19(4) pp474-499

    Article  Google Scholar 

  • Frehse FDA, Braga RR, Nocera GA, Vitule JRS (2016) Non-native species and invasion biology in a megadiverse country: scientometric analysis and ecological interactions in Brazil. Biol Invasions 18(12):3713–3725

    Article  Google Scholar 

  • Frezina NCA (2013) Assessment and utilization of water hyacinth in the water bodies of Tamil Nadu. Int J Sci Res Rev 2(1):58–77

    Google Scholar 

  • FSI (2011) India State of Forest Report. Forest Survey of India, Dehradun

    Google Scholar 

  • FSI (2015) India State of Forest Report. Forest Survey of India, Dehradun

    Google Scholar 

  • Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23(12):695–703

    Article  PubMed  Google Scholar 

  • Gaertner M, Nottebrock H, Fourie H, Privett SD, Richardson DM (2012) Plant invasions restoration and economics: perspectives from South African fynbos. Perspect Plant Ecol 14(5):341–353

    Article  Google Scholar 

  • Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distributions 16(3):331–342

    Article  Google Scholar 

  • Ghazoul J, Sheil D (2010) Tropical rain forest ecology diversity and conservation. Oxford University Press

    Google Scholar 

  • Global Invasive Alien Species Information Partnership Gateway, http://giasipartnershipmyspeciesinfo/en

    Google Scholar 

  • Global Invasive Species Database (2017a) Species profile: Lantana camara http://wwwiucngisdorg/gisd/speciesname/Lantana+camara

    Google Scholar 

  • Global Invasive Species Database (2017b), Species profile: Ageratum conyzoides http://wwwiucngisdorg/gisd/speciesname/Ageratum%20conyzoides

    Google Scholar 

  • Global Invasive Species Database (GISD), http://wwwiucngisdorg/gisd/

    Google Scholar 

  • Global Naturalized Alien Flora (GloNAF), https://glonaforg/

    Google Scholar 

  • Global Register of Introduced and Invasive Species (GRIIS), http://wwwgriisorg/

    Google Scholar 

  • Golivets M (2014) Ecological and biological determination of invasion success of non-native plant species in urban woodlands with special regard to short-lived monocarps. Urban Ecosyst 17(1):291–303

    Article  Google Scholar 

  • Gooden B, French K, Turner PJ (2009) Invasion and management of a woody plant Lantana camara L alters vegetation diversity within wet sclerophyll forest in southeastern Australia. Forest Ecol Manag 257(3):960–967

    Article  Google Scholar 

  • Gordon DR (1998) Effects of invasive non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8(4):975–989

    Article  Google Scholar 

  • Government of Madhya Pradesh, http://wwwmpgovin/en/web/guest/forest

    Google Scholar 

  • Gray DR (2017) Climate change can reduce the risk of biological invasion by reducing propagule size. Biol Invasions 19(3):913–923

    Article  Google Scholar 

  • Gray AJ, Mack RN, Harper JL, Usher MB, Joysey K, Kornberg H (1986) Do invading species have definable genetic characteristics? Philos Trans R Soc Lond B Biol Sci 314(1167):655–674

    Article  Google Scholar 

  • Great Britain’s Non-Native Species Information Portal (GBNNSIP), http://wwwnonnativespeciesorg/factsheet/

    Google Scholar 

  • Groves RH, Lonsdale M, Boden R (2005) Jumping the garden fence: invasive garden plants in Australia and their environmental and agricultural impacts. WWF-Australia Ultimo

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  PubMed  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2):147–186

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16(12):1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Haeuser E, Dawson W, van Kleunen M (2017) The effects of climate warming and disturbance on the colonization potential of ornamental alien plant species. J Eecol https://doi.org/101111/1365-274512798

    Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Cons Biol 22(3):534–543

    Article  Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93(1):5–15

    Article  Google Scholar 

  • Hiremath AJ, Sundaram B (2005) The fire-lantana cycle hypothesis in Indian forests. Cons Soc 3(1):26–42

    Google Scholar 

  • Hiremath AJ, Sundaram B (2013) Invasive plant species in Indian protected areas: conserving biodiversity in cultural landscapes. In: Foxcroft L, PyÅ¡ek P, Richardson D, Genovesi P (eds) Plant invasions in protected areas. Invading Nature – Springer series in invasion ecology, vol 7. Springer, Dordrecht, pp 241–266

    Google Scholar 

  • Hobbs RJ (1989) The nature and effects of disturbance relative to invasions. Biological Invasions: a global perspective. In: Drake JA, Mooney HA, Di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M (eds) Biological invasions: A global perspective. John Wiley and Sons, New York, pp 389–405

    Google Scholar 

  • Holm LG, Pancho JV, Herberger JP, Plucknett DL (1979) A geographical atlas of world weeds. Wiley, New York

    Google Scholar 

  • Holm LG, Pancho JV, Herberger JP, Plucknett DL (1991) A geographical atlas of world weeds. In: Krieger Publishing Company. Malabar, Florida

    Google Scholar 

  • Hui C, Richardson DM, Landi P, Minoarivelo HO, Garnas J, Roy HE (2016) Defining invasiveness and invasibility in ecological networks. Biol Invasions 18(4):971–983

    Article  Google Scholar 

  • Hulme PE (2008) Contrasting alien and native plant species–area relationships: the importance of spatial grain and extent. Glob Ecol Biogeogr 17(5):641–647

    Article  Google Scholar 

  • Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, PyÅ¡ek P (2008) Grasping at the routes of Biological Invasions: a framework for integrating pathways into policy. J Appl Ecol 45(2):403–414

    Article  Google Scholar 

  • Iannone BV, Potter KM, Guo Q, Liebhold AM, Pijanowski BC, Oswalt CM, Fei S (2016) Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns. Ecography 39(10):961–969

    Article  Google Scholar 

  • India Biodiversity Portal, Xanthium strumarium L. Species page https://indiabiodiversityorg/species/show/266687

    Google Scholar 

  • Invasive Alien Plant Species in India (ENVIS Centre on Floral Diversity), http://wwwbsienvisnicin/Database/Invasive_Alien_species_15896aspx

    Google Scholar 

  • Island Biodiversity and Invasive Species Database (IBIS), http://ibisfosaucklandacnz/page/invasive-speciesaspx

    Google Scholar 

  • Ismail BS, Mah LS (1993) Effects of Mikania micrantha HBK on germination and growth of weed species. Plant Soil 157(1):107–113

    Google Scholar 

  • Janzen DH (1988a) Management of habitat fragments in a tropical dry forest: growth. Ann Mo Bot Gard 75(1):105–116

    Article  Google Scholar 

  • Janzen DH (1988b) Tropical dry forests: The most endangered major tropical ecosystem. In: Wilson EO, Peters FM (eds) Biodiversity. National Academy Press, Washington DC, pp 130–144

    Google Scholar 

  • Jauni M, Hyvönen T (2010) Invasion level of alien plants in semi-natural agricultural habitats in boreal region. Agric Ecosyst Environ 138(1):109–115

    Article  Google Scholar 

  • Jeschke J, Aparicio LG, Haider S, Heger T, Lortie C, PyÅ¡ek P, Strayer D (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20

    Article  Google Scholar 

  • Johnson PT, Olden JD, Solomon CT, Van der Zanden MJ (2009) Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia 159(1):161–170

    Article  PubMed  Google Scholar 

  • Joshi PK, Kumar M, Paliwal A, Midha N, Dash PP (2009) Assessing impact of industrialization in terms of LULC in a dry tropical region (Chhattisgarh), India using remote sensing data and GIS over a period of 30 years. Environ Monit Assess 149(1):371–376

    Article  CAS  PubMed  Google Scholar 

  • Kamble RB, Hate SD, Chaturvedi A (2013) New additions to the Flora of Nagpur District, Maharashtra. J New Biol Rep 2(1):9–13

    Google Scholar 

  • Kannan R, Shackleton CM, Shaanker RU (2013) Playing with the forest: invasive alien plants policy and protected areas in India. Curr Sci 104(9):1159–1165

    Google Scholar 

  • Karlsson LM, Tamado T, Milberg P (2003) Seed dormancy pattern of the annuals Argemone ochroleuca and A. mexicana (Papaveraceae). Flora Morph Distrib Funct Ecol Plants 198(4):329–339

    Article  Google Scholar 

  • Katz DS, Ibáñez I (2016) Biotic interactions with natural enemies do not affect potential range expansion of three invasive plants in response to climate change. Biol Invasions 18(11):3351–3363

    Article  Google Scholar 

  • Kaur B, Bhatia S, Sharma KK (2014) Diversity and impact of invasive alien plant species of family Asteraceae in Jammu district (Jammu and Kashmir India). Int J Interdis Multidis Stud 1(8):51–62

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17(4):164–170

    Article  Google Scholar 

  • Kgope BS, Bond WJ, Midgley GF (2010) Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol 35(4):451–463

    Article  Google Scholar 

  • Khuroo AA, Rashid I, Reshi Z, Dar GH, Wafai BA (2007) The alien flora of Kashmir Himalaya. Biol Invasions 9(3):269–292

    Article  Google Scholar 

  • Khuroo AA, Reshi ZA, Malik AH, Weber E, Rashid I, Dar GH (2012) Alien flora of India: taxonomic composition invasion status and biogeographic affiliations. Biol Invasions 14(1):99–113

    Article  Google Scholar 

  • Kim CG, Kil J (2016) Alien flora of the Korean Peninsula. Biol Invasions 18(7):1843–1852

    Article  Google Scholar 

  • van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cardenas D Cardenas-Toro J, Castano N, Chacon E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Froom QJ, Henderson L, Inderjit, Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu WS, Thomas J, Velayos M, Wieringa JJ, Pysek P (2015) Global exchange and accumulation of non-native plants. Nature 525(7567):100-103

    Article  CAS  PubMed  Google Scholar 

  • Knox J, Jaggi D, Paul MS (2011) Population dynamics of Parthenium hysterophorus (Asteraceae) and its biological suppression through Cassia occidentalis (Caesalpiniaceae). Turk J Bot 35(2):111–119

    Google Scholar 

  • Kohli RK, Batish DR, Singh HP, Dogra KS (2006) Status invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L Ageratum conyzoides L Lantana camara L) in India. Biol Invasions 8(7):1501–1510

    Article  Google Scholar 

  • Kohli RK, Batish DR, Singh JS, Singh HP, Bhatt JR, Singh SP, Tripathi RS (2012) Plant invasion in India: An overview. In: Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (eds) Invasive alien plants: An ecological appraisal for the Indian subcontinent. CAB International, pp p1–p9

    Google Scholar 

  • Kuebbing SE, Nuñez MA (2016) Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nature plants 2:p16134

    Article  Google Scholar 

  • Kuebbing SE, Nuñez MA, Simberloff D (2013) Current mismatch between research and conservation efforts: the need to study co-occurring invasive plant species. Biol Cons 160:121–129

    Article  Google Scholar 

  • Kueffer C, Kull CA (2017) Non-native species and the aesthetics of nature. In: Vilà M, Hulme P (eds) Impact of biological invasions on ecosystem services. Invading Nature - Springer series in invasion ecology, vol 12. Springer, Cham, pp 311–324

    Google Scholar 

  • Kueppers LM, Snyder MA, Sloan LC, Zavaleta ES, Fulfrost B (2005) Modeled regional climate change and California endemic oak ranges. Proc Natl Acad Sci USA 102:16281–16286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kull CA, Shackleton CM, Cunningham PJ, Ducatillon C, Dufour-Dror JM, Esler KJ, Friday JB, Gouveia AC, Griffin AR, Marchante E, Midgley SJ, Pauchard A, Rangan H, Richardson DM, Rinaudo T, Tassin J, Urgenson LS, von Maltitz GP, Zenni RD, Zylstra MJ (2011) Adoption use and perception of Australian acacias around the world. Divers distributions 17(5):822–836

    Article  Google Scholar 

  • Kumari P, Choudhary AK (2016) Exotic species invasion threats to forests: A case study from the Betla national park, Palamu, Jharkhand, India. Trop Plant Res 3(3):592–599

    Article  Google Scholar 

  • Kumari P, Sahu PK, Soni MY, Awasthi P (2014) Impact of Parthenium hysterophorus L invasion on species diversity of cultivated fields of Bilaspur (CG). India. Agric Sci 5(8):754–764

    Google Scholar 

  • Kushwah RBS, Kumar V (2002) Status of flora in protected areas: the case studies of eight Pas of Madhya Pradesh (India). Ind For 128(3):271–288

    Google Scholar 

  • Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96(5):860–868

    Article  Google Scholar 

  • Lal C, Singh L, Attri V, Sarvade S (2015) Tree species diversity distribution and population structure in a tropical dry deciduous forests of Chhatisgarh India. J Appl Nat Sci 7(2):681–685

    Article  CAS  Google Scholar 

  • Larson DL, Anderson PJ, Newton W (2001) Alien plant invasion in mixed-grass prairie: effects of vegetation type and anthropogenic disturbance. Ecol Appl 11(1):128–141

    Article  Google Scholar 

  • Lerdau M, Whitbeck J, Holbrook NM (1991) Tropical deciduous forest: death of a biome. Trends Ecol Evol 6(7):201–202

    Article  CAS  PubMed  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7(10):975–989

    Article  Google Scholar 

  • Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519(7542):171–180

    Article  CAS  PubMed  Google Scholar 

  • Li B, Xu B, Chen J (2001) Perspectives on general trends of plant invasions with special reference to alien weed flora of Shanghai. Biodiv Sci 9(4):446–457

    Google Scholar 

  • Lindemann-Matthies P (2016) Beasts or beauties? Laypersons’ perception of invasive alien plant species in Switzerland and attitudes towards their management. NeoBiota 29:15–33

    Article  Google Scholar 

  • Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate Change and the Future of California’s. Endemic Flora PLoS One 3(6):e2502. https://doi.org/101371/journalpone0002502

    Article  PubMed  CAS  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers distributions 15(5):904–910

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2013) Invasion ecology. Wiley-Blackwell, West Sussex

    Google Scholar 

  • Loo SE, Mac Nally R, O’Dowd DJ, Lake PS (2009) Secondary invasions: implications of riparian restoration for in-stream invasion by an aquatic grass. Restor Ecol 17(3):378–385

    Article  Google Scholar 

  • Louman B, DeClerck F, Ellatifi M, Finegan B, Thompson I (2010) Forest biodiversity and ecosystem services: drivers of change responses and challenges. IUFRO (International Union of Forestry Research Organizations) Secretariat 25:95–112

    Google Scholar 

  • Lugo AE (2013) Novel tropical forests: Nature’s response to global change. Trop Cons Sci Spl Issue 6(3):325–337

    Google Scholar 

  • MacArthur R (1970) Species packing and competitive equilibrium for many species. Theor Popul Biol 1(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86(1):42–55

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes epidemiology global consequences and control. Ecol Appl 10(3):689–710

    Article  Google Scholar 

  • Madhya Pradesh Forest Department, http://wwwmpforestorg/foresthtml

    Google Scholar 

  • Marchante E, Kjøller A, Struwe S, Freitas H (2009) Soil recovery after removal of the N2-fixing invasive Acacia longifolia: consequences for ecosystem restoration. Biol Invasions 11(4):813–823

    Article  Google Scholar 

  • Martínez OJA (2009) Ecology of novel forests dominated by the African tulip tree (Spathodea campanulata Beauv) in northcentral Puerto Rico. Masters thesis, University of Puerto Rico, Río Piedras, Puerto Rico.

    Google Scholar 

  • Martínez OJA (2010) Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico. Plant Ecol 211:49–64

    Article  Google Scholar 

  • Martínez OJA, Lugo AE (2008) Post sugar cane succession in moist alluvial sites in Puerto Rico. In: Myster RW (ed) Post-agricultural succession in the Neotropics. Springer, New York, pp 73–92

    Chapter  Google Scholar 

  • Martínez OJA, Rodríguez MA, Rosario I, Soto N, López A, Lugo AE (2010) Structure and species composition of novel forests dominated by an introduced species in northcentral Puerto Rico. New Forest 39:1–18

    Article  Google Scholar 

  • Maskell LC, Firbank LG, Thompson K, Bullock JM, Smart SM (2006) Interactions between non-native plant species and the floristic composition of common habitats. J Ecol 94(6):1052–1060

    Article  Google Scholar 

  • Mazzolari AC, Marrero HJ, Vázquez DP (2017) Potential contribution to the invasion process of different reproductive strategies of two invasive roses. Biol Invasions 19(2):615–623

    Article  Google Scholar 

  • McDougall KL, Khuroo AA, Loope LL, Parks CG, Pauchard A, Reshi ZA, Rushworth I, Kueffer C (2011) Plant invasions in mountains: global lessons for better management. Mountain Res Develop 31(4):380–387

    Article  Google Scholar 

  • McGeoch MA, Genovesi P, Bellingham PJ, Costello MJ, McGrannachan C, Sheppard A (2016) Prioritizing species pathways and sites to achieve conservation targets for biological invasion. Biol Invasions 18(2):299–314

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington DC

    Google Scholar 

  • Misra SS, Sushi SN, Rajak DC (2012) Biocontrol strategy for major invasive weeds of neotropical origin in India. Bioherald: Int J Biodiv Environ 2(2):134–142

    Google Scholar 

  • Mittermeier RA, Myers N, Mittermeier CG, Robles G (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Conservation International. The University of Chicago Press, Chicago, p 392

    Google Scholar 

  • Monty A, Bizoux JP, Escarré J, Mahy G (2013) Rapid plant invasion in distinct climates involves different sources of phenotypic variation. PLoS One 8(1):pe55627

    Article  CAS  Google Scholar 

  • Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc Lond B Biol Sci 365(1558):3709–3718

    Article  PubMed  PubMed Central  Google Scholar 

  • Motloung R, Robertson M, Rouget M, Wilson J (2014) Forestry trial data can be used to evaluate climate-based species distribution models in predicting tree invasions. NeoBiota 20:31–48

    Article  Google Scholar 

  • Mudgal V, Khanna KK, Hazra PK (1997) Flora of Madhya Pradesh II. Botanical Survey of India, pp 403-404

    Google Scholar 

  • Mujaffar S, Shukla SK, Mishra S (2013) Some angiospermic plants new to Central India. Sci Res Rep 3(2):102–105

    Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Evol Syst 17(1):67–88

    Article  Google Scholar 

  • Murray B, Phillips M (2012) Temporal introduction patterns of invasive alien plant species to Australia. NeoBiota 13:1–14

    Article  Google Scholar 

  • Murray BR, Martin LJ, Phillips ML, PyÅ¡ek P (2017) Taxonomic perils and pitfalls of dataset assembly in ecology: a case study of the naturalized Asteraceae in Australia. NeoBiota 34:1–20

    Article  Google Scholar 

  • Myers RL (1983) Site susceptibility to invasion by the exotic tree Melaleuca quinquenervia in southern Florida. J Appl Ecol 20(2):645–658

    Article  Google Scholar 

  • Nagel JM, Huxman TE, Griffin KL, Smith SD (2004) CO2 enrichment reduces the energetic cost of biomass construction in an invasive desert grass. Ecology 85(1):100–106

    Article  Google Scholar 

  • Namkeleja HS, Tarimo MT, Ndakidemi PA (2014) Allelopathic effects of Argemone mexicana to growth of native plant species. Am J Plant Sci 5:1336–1344

    Article  Google Scholar 

  • Nayar MP (1977) Changing patterns of the Indian flora. Nelumbo 19(1-4):145–155

    Google Scholar 

  • Ning L, Yu FH, van Kleunen M (2016) Allelopathy of a native grassland community as a potential mechanism of resistance against invasion by introduced plants. Biol Invasions 18(12):3481–3493

    Article  Google Scholar 

  • Oduor AM, Leimu R, Kleunen M (2016) Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J Ecol 104(4):957–968

    Article  Google Scholar 

  • Ööpik M, Bunce RGB, Tischler M (2013) Horticultural markets promote alien species invasions: an Estonian case study of herbaceous perennials. NeoBiota 17:19–37

    Article  Google Scholar 

  • Padalia H, Bahuguna U (2017) Spatial modelling of congruence of native biodiversity and potential hotspots of forest invasive species (FIS) in central Indian landscape. J Nat Cons 36:29–37

    Article  Google Scholar 

  • Padalia H, Kudrat M, Sharma KP (2013) Mapping sub-pixel occurrence of an alien invasive Hyptis suaveolens (L.) Poit using spectral unmixing technique. Int J Remote Sens 34(1):325–340

    Article  Google Scholar 

  • Padalia H, Srivastava V, Kushwaha SPS (2014) Modeling potential invasion range of alien invasive species Hyptis suaveolens (L) Poit in India: Comparison of MaxEnt and GARP. Ecol Inform 22:36–43

    Article  Google Scholar 

  • Pande PK (2001) Structures of the tropical dry deciduous teak (Tectona grandis) forests of Satpura plateau (India) with special emphasis on regeneration and disturbance. J Trop For Sci 13(2):329–343

    Google Scholar 

  • Pande PK (2005) Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Trop Ecol 46(2):229–240

    Google Scholar 

  • Pandey DS (2000) Exotics–introduced and natural immigrants weeds cultivated etc. In: Singh NP, Singh DK, Hajra PK, Sharma BD (eds) Flora of India (introductory volume Part II). Botanical Survey of India, Kolkata, pp 266–301

    Google Scholar 

  • Pandey HP, Chauhan SK (2012) Lantana camara: a journey from eradication to adaptive management. Bioherald: Int J Biodiv Environ 2(2):99–109

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Pasiecznik NM, Felker P, Harris PJ, Harsh L, Cruz G, Tewari JC, Cadoret K, Maldonado LJ (2001) The ‘Prosopis Juliflora’-‘Prosopis Pallida’ Complex: A Monograph. (Vol 172), Coventry UK

    Google Scholar 

  • Patel DK (2012) Vegetation structure and composition in Guru Ghasidas Vishwavidyalaya in Central India. Int J Biodiv Cons 4(15):621–632

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Pearson DE, Ortega YK, Runyon JB, Butler JL (2016) Secondary invasion: the bane of weed management. Biol Cons 197:8–17

    Article  Google Scholar 

  • Peerzada N (1997) Chemical composition of the essential oil of Hyptis suaveolens. Molecules 2(11):165–168

    Article  CAS  Google Scholar 

  • Peh KSH, Balmford A, Birch JC, Brown C, Butchart SH, Daley J, Dawson J, Gray G, Hughes FM, Mendes S, Millett J, Stattersfield AJ, Thomas DHL, Walpole M, Bradbury RB (2015) Potential impact of invasive alien species on ecosystem services provided by a tropical forested ecosystem: a case study from Montserrat. Biol Invasions 17(1):461–475

    Article  Google Scholar 

  • Penk MR, Jeschke JM, Minchin D, Donohue I (2016) Warming can enhance invasion success through asymmetries in energetic performance. J Anim Ecol 85(2):419–426

    Article  PubMed  Google Scholar 

  • Pergl J, PyÅ¡ek P, Bacher S, Essl F, Genovesi P, Harrower CA, Hulme PE, Jeschke JE, Kenis M, Kühn I, Perglová I (2017) Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways? NeoBiota 32:1–20

    Article  Google Scholar 

  • Perrings C, Mooney H, Williamson M (2010) Bio-invasions and globalization: ecology economics management and policy. Oxford University Press, Oxford, p 288

    Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285(5431):1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (2002) Biological invasions: Economic and environmental costs of alien plant animal and microbe species. CRC Press, Boca Raton, p 384. https://doi.org/101201/9781420041668

    Book  Google Scholar 

  • Powell KI, Chase JM, Knight TM (2011) A synthesis of plant invasion effects on biodiversity across spatial scales. Am J Bot 98(3):539–548

    Article  PubMed  Google Scholar 

  • Priya ES, Selvan PS (2017) Water hyacinth (Eichhornia crassipes)–An efficient and economic adsorbent for textile effluent treatment–A review. Arab J Chem 10:S3548–S3558

    Article  CAS  Google Scholar 

  • PyÅ¡ek P (1998) Is there a taxonomic pattern to plant invasions? Oikos 82:282–294

    Article  Google Scholar 

  • PyÅ¡ek P, Richardson D (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological Invasions. Ecological Studies (Analysis and Synthesis), vol 193. Springer, Berlin/Heidelberg, pp 97–125

    Google Scholar 

  • PyÅ¡ek P, Richardson DM (2008) Invasive plants. In: Jorgensen SE, Brian DF (eds) Ecological engineering. Vol [3] of Encyclopedia of ecology, vol 5, pp 2011–2020

    Chapter  Google Scholar 

  • Quamar MF, Chauhan MS (2011) Late holocene vegetation climate change and human impact in southwestern Madhya Pradesh. India. Palaeobotanist 60(2):281–289

    Google Scholar 

  • Raghubanshi AS, Tripathi A (2009) Effect of disturbance habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Trop Ecol 50(1):57–69

    Google Scholar 

  • Raizada P, Singh A, Raghubanshi AS (2009) Comparative response of seedlings of selected native dry tropical and alien invasive species to CO2 enrichment. J Plant Ecol 2(2):69–75

    Article  Google Scholar 

  • Rajashekar Y, Ravindra KV, Bakthavatsalam N (2014) Leaves of Lantana camara Linn (Verbenaceae) as a potential insecticide for the management of three species of stored grain insect pests. J Food Sci Tech 51(11):3494–3499

    Article  CAS  Google Scholar 

  • Ramaswami G, Sukumar R (2013) Long-term environmental correlates of invasion by Lantana camara (Verbenaceae) in a seasonally dry tropical forest. PLoS One 8(10):pe76995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RR, Murugan R (2006) Impact of exotic adventives weeds on native biodiversity in India: implications for conservation. In: Rai LC, Gaur JP (eds) Invasive alien species and biodiversity in India. Banaras Hindu University, Varanasi, pp 93–109

    Google Scholar 

  • Rao RR, Sagar K, Sathyanarayana N (2012) Resource utilization and beneficial aspects of invasive alien weeds with special reference to the Western Ghats, India. In: Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (eds) Invasive alien plants: An ecological appraisal for the Indian subcontinent. CAB International, Wallingford, pp 271–281

    Google Scholar 

  • Ray S, Sainkhediya J (2014) Some new record for the flora of Madhya Pradesh. Biosci Discov 5(2):187–192

    Google Scholar 

  • Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, Pergl J, PyÅ¡ek P, Weigelt P, Winter M, van Kleunen M (2016) Plants capable of selfing are more likely to become naturalized. Nat Commun 7:p13313

    Article  CAS  Google Scholar 

  • Reddy CS (2012) Assessment of plant invasions across different habitats of India. Bioherald: Int J Biodiv Environ 2(2):110–125

    Google Scholar 

  • Reichard S (2011) Horticulture. In: Simberloff D, Rejmanek M (eds) Encyclopedia of Biological Invasions. University of California Press, Berkeley, pp 336–342

    Google Scholar 

  • Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Reshi MI, Chadhar BL, Khare PK (2017) Alien invasive plants of Central Indian tropical dry deciduous forests of Sagar district, Madhya Pradesh, India. Indian For 143(2):157–164

    Google Scholar 

  • Richardson DM (1998) Forestry trees as invasive aliens. Cons Biol 12(1):18–26

    Article  Google Scholar 

  • Richardson DM, PyÅ¡ek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196(2):383–396

    Article  PubMed  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species–a global review. Divers Distributions 17(5):788–809

    Article  Google Scholar 

  • Richardson DM, PyÅ¡ek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distributions 6(2):93–107

    Article  Google Scholar 

  • Rinawati F, Stein K, Lindner A (2013) Climate change impacts on biodiversity – the setting of a lingering global crisis. Diversity 5(1):114–123

    Article  Google Scholar 

  • Rodger JG, Johnson SD (2013) Self-pollination and inbreeding depression in Acacia dealbata: Can selfing promote invasion in trees? S Afr J Bot 88:252–259

    Article  Google Scholar 

  • Sagar R, Singh JS (2005) Structure, diversity and regeneration of tropical dry deciduous forest of northern India. Biodiversity Conserv 14(4):935–959

    Article  Google Scholar 

  • Saha S (2002) Anthropogenic fire regime in a deciduous forest of central India. Curr Sci 82(9):1144–1147

    Google Scholar 

  • Sahu PK, Gupta S (2014) Medicinal plants of morning glory: Convolvulaceae Juss of Central India (Madhya Pradesh and Chhattisgarh). Biolife 2(2):463–469

    Google Scholar 

  • Sahu PK, Singh JS (2008) Structural attributes of lantana-invaded forest plots in Achanakmar–Amarkantak Biosphere Reserve, Central India. Curr Sci 94(4):494–500

    Google Scholar 

  • Sahu PK, Sagar R, Singh JS (2008) Tropical forest structure and diversity in relation to altitude and disturbance in a Biosphere Reserve in central India. Appl Veg Sci 11(4):461–470

    Article  Google Scholar 

  • Sahu KP, Urmalia R, Mashi SK, Tiwari V (2012) Contribution to the flora of Umaria district of MP. J Eco Tax Bot 36:261–274

    Google Scholar 

  • Saikia P, Kumar A, Khan ML (2016) Biodiversity status and climate change scenario in Northeast India. In: Nautiyal S, Schaldach R, Raju K, Kaechele H, Pritchard B, Rao K (eds) Climate change challenge (3C) and social-economic-ecological interface-building. Environmental science and engineering. Springer, Cham

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32(1):305–332

    Article  Google Scholar 

  • Salunkhe O, Khare PK, Sahu TR, Singh S (2016) Estimation of tree biomass reserves in tropical deciduous forests of Central India by non-destructive approach. Trop Ecol 57(2):153–161

    CAS  Google Scholar 

  • Sanderson LA, Antunes PM (2013) The exotic invasive plant Vincetoxicum rossicum is a strong competitor even outside its current realized climatic temperature range. NeoBiota 16:1–15

    Article  Google Scholar 

  • Sandilyan S, van’t Klooster CI (2016) The other sides of invasive alien plants of India—With special reference to medicinal values. J Nat Cons 31:16–21

    Article  Google Scholar 

  • Sandya GS, Ahirwar RK (2015) Ethnobotanical studies of some wild food plants of District Umaria, Central India. Int J Sci Res 4(4):432–435

    Google Scholar 

  • Saul WC, Roy HE, Booy O, Carnevali L, Chen HJ, Genovesi P, Harrower CA, Hulme PE, Pagad S, Pergl J, Jeschke JM (2017) Assessing patterns in introduction pathways of alien species by linking major invasion data bases. J Appl Ecol 54(2):657–669

    Article  Google Scholar 

  • Seebens H, Gastner MT, Blasius B (2013) The risk of marine bioinvasion caused by global shipping. Ecol Lett 16(6):782–790

    Article  CAS  PubMed  Google Scholar 

  • Seebens H, Essl F, Dawson W, Fuentes N, Moser D, Pergl J, PyÅ¡ek P, Kleunen M, Weber E, Winter M, Blasius B (2015) Global trade will accelerate plant invasions in emerging economies under climate change. Glob Change Biol 21(11):4128–4140

    Article  Google Scholar 

  • Seebens H, Essl F, Blasius B (2017a) The intermediate distance hypothesis of Biological Invasions. Ecol Lett 20(2):158–165

    Article  PubMed  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, PyÅ¡ek P, Winter M, Arianoutsou M, Bacher S (2017b) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifu A, Seboka N, Misganaw M, Bekele T, Merawi E, Ayenew A, Faris G (2017) Impact of invasive alien plant Xanthium strumarium on species diversity and composition of invaded plant communities in Borena Zone. Ethiopia. Biodiv Int J 1(1):00004

    Google Scholar 

  • Sekar KC (2012) Invasive alien plants of Indian Himalayan region – diversity and implication. Am J Plant Sci 3(2):177–184

    Article  Google Scholar 

  • Shabbir A, Bajwa R (2007) Parthenium invasion in Pakistan – A threat still unrecognized. Pak J Bot 39(7):2519–2526

    Google Scholar 

  • Shackleton RT, Le Maitre DC, Pasiecznik NM, Richardson DM (2014) Prosopis: a global assessment of the biogeography benefits impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6:plu027

    Article  PubMed  PubMed Central  Google Scholar 

  • Shackleton RT, Le Maitre DC, Richardson DM (2015) Prosopis invasions in South Africa: Population structures and impacts on native tree population stability. J Arid Environ 114:70–78

    Article  Google Scholar 

  • Shackleton CM, Ruwanza S, Sanni GS, Bennett S, De Lacy P, Modipa R, Mtati N, Sachikonye M, Thondhlana G (2016) Unpacking Pandora’s box: understanding and categorising ecosystem disservices for environmental management and human wellbeing. Ecosystems 19(4):587–600

    Article  Google Scholar 

  • Sharma GP, Raghubanshi AS (2006) Tree population structure regeneration and expected future composition at different levels of Lantana camara L. invasion in the Vindhyan tropical dry deciduous forest of India. Lyonia 11(1):27–39

    Google Scholar 

  • Sharma GP, Singh JS, Raghubanshi AS (2005) Plant invasions: emerging trends and future implications. Curr Sci 88(5):726–734

    Google Scholar 

  • Sharma GP, Raizada P, Raghubanshi AS (2009) Hyptis suaveolens: an emerging invader of Vindhyan plateau India. Weed Biol Manag 9(3):185–191

    Article  Google Scholar 

  • Sharma A, Batish DR, Singh HP, Jaryan V, Kohli RK (2017) The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India. Flora 233:156–162

    Article  Google Scholar 

  • Shen XY, Peng SL, Chen BM, Pang JX, Chen LY, Xu HM, Hou YP (2011) Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biol Invasions 13(4):869–881

    Article  Google Scholar 

  • Shiferaw H, Teketay D, Nemomissa S, Assefa F (2004) Some biological characteristics that foster the invasion of Prosopis juliflora (Sw) DC at Middle Awash Rift Valley Area, north-eastern Ethiopia. J Arid Environ 58(2):135–154

    Article  Google Scholar 

  • Shmueli G (2010) To explain or to predict? Stat Sci 25(3):289–310

    Article  Google Scholar 

  • Shukla BK, Sinha GP (2012) An inventory of invasive alien species of Chhattisgarh India. Bioherald: Int J Biodiv Environ 2(2):126–133

    Google Scholar 

  • Shukla AN, Singh KP, Singh JS (2009) Invasive alien species of Achanakmar-Amarkantak Biosphere Reserve Central India. Proc Natl Acad Sci India B Biol 79(4):384–392

    Google Scholar 

  • Simberloff D, Rejmánek M (eds) (2011) Encyclopedia of Biological Invasions. University of California Press, Berkeley

    Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1(1):21–32

    Article  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, PyÅ¡ek P (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66

    Article  PubMed  Google Scholar 

  • Singh KP, Singh JS (1988) Certain structural and functional aspects of dry tropical forest and savanna. Int J Ecol Environ Sci 14:31–45

    Google Scholar 

  • Singh BP, Upadhyay R (2014) Medicinal pteridophytes of Madhya Pradesh. J Pharmacogn Phytochem 3(3):173–176

    Google Scholar 

  • Singh JP, Singh SP, Gupta SR (2006) Ecology environment and resource conservation. Anamaya Publishers, New Delhi

    Google Scholar 

  • Singh KP, Shukla AN, Singh JS (2010) State-level inventory of invasive alien plants their source regions and use potential. Curr Sci 99(1):107–114

    Google Scholar 

  • Sinha MK, Sinha D (2013) Composition of forest vegetation of Koria district Chhattisgarh (India). Glob J Biol Agric Health Sci 2(4):160–168

    Google Scholar 

  • Sitzia T, Campagnaro T, Kowarik I, Trentanovi G (2016) Using forest management to control invasive alien species: helping implement the new European regulation on invasive alien species. Biol Invasions 18(1):1–7

    Article  Google Scholar 

  • Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583

    Article  CAS  PubMed  Google Scholar 

  • Soni MY, Sahu PK, Kumari P, Somi I, Awasthi P (2014) Impact of Lantana camara invasion on species diversity and regeneration status of tropical forest in Bilaspur (CG). Int J Biol Sci 1(3):42–52

    Google Scholar 

  • Southern African Plant Invaders Atlas (SAPIA), http://wwwinvasivesorgza/

    Google Scholar 

  • Srivastava S, Dvivedi A, Shukla RP (2014) Invasive alien species of terrestrial vegetation of north-eastern Uttar Pradesh. Int J Forest Res 2014

    Google Scholar 

  • Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The Anthropocene: conceptual and historical perspectives. Philos Trans A Math Phys Eng Sci 369(1938):842–867

    Article  PubMed  Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4(5):140

    Article  CAS  Google Scholar 

  • Stout JC, Tiedeken EJ (2017) Direct interactions between invasive plants and native pollinators: evidence impacts and approaches. Funct Ecol 31:38–46

    Article  Google Scholar 

  • Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21(11):645–651

    Article  PubMed  Google Scholar 

  • Sullivan RG, Clark M (2007) Can biodiversity survive global warming? Chicago Wilderness Journal 5(1):2–13

    Google Scholar 

  • Suman NR, Khare PK, Salunkhe O, Chadhar B (2017) Alien angiospermic plants of Panna tiger reserve, Madhya Pradesh, India. Indian For 143(1):19–24

    Google Scholar 

  • Sundaram B, Hiremath AJ (2012) Lantana camara invasion in a heterogeneous landscape: patterns of spread and correlation with changes in native vegetation. Biol Invasions 14(6):1127–1141

    Article  Google Scholar 

  • Sundarapandian SM, Subashree K (2017) Status of invasive plants in Tamil Nadu India: their impact and significance. In: Ansari AA, Gill SS, Abbas ZK, Naeem M (eds) Plant biodiversity: monitoring assessment and conservation. CAB International, Wallingford, pp 371–387

    Chapter  Google Scholar 

  • Sundarapandian SM, Muthumperumal C, Subashree K (2015) Biological invasion of vines their impacts and management. In: Parthasarathy N (ed) Biodiversity of Lianas. Springer, Cham, pp 211–253

    Chapter  Google Scholar 

  • Swamy PS, Ramakrishnan PS (1987) Effect of fire on population dynamics of Mikania micrantha HBK during early succession after slash-and-burn agriculture (jhum) in northeastern India. Weed Res 27(6):397–403

    Article  Google Scholar 

  • Téllez TR, López EMDR, Granado GL, Pérez EA, López RM, Guzmán JMS (2008) The water hyacinth Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquat Invasions 3(1):42–53

    Article  Google Scholar 

  • Thakur AS (2015a) Phytosociological analysis of Gopalpura forest in Sagar district, MP. Scholars Impact 1(2):8–15

    Google Scholar 

  • Thakur AS (2015b) Floristic composition life-forms and biological spectrum of tropical dry deciduous forest in Sagar District, Madhya Pradesh, India. Trop Plant Res 2(2):112–119

    Google Scholar 

  • Thakur AS, Khare PK (2006) Species diversity and dominance in tropical dry deciduous forest ecosystem. J Environ Res Develop 1(1):26–31

    Google Scholar 

  • The Directorate of Plant Protection Quarantine and Storage, http://ppqsgovin/

    Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176(2):256–273

    Article  PubMed  Google Scholar 

  • Tireman H (1916) Lantana in the forests of Coorg. Indian For 42:384–392

    Google Scholar 

  • Traveset A, Richardson DM (2006) Biological Invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21(4):208–216

    Article  PubMed  Google Scholar 

  • Tripathi RS, Khan ML, Yadav AS (2012) Biology of Mikania micrantha HBK: a Review. In: Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (eds) Invasive alien plants: An ecological appraisal for the Indian subcontinent. CAB International, Wallingford, pp 99–107

    Google Scholar 

  • TRY Plant Trait Database, https://wwwtry-dborg/TryWeb/Homephp

    Google Scholar 

  • Uyi OO, Ekhator F, Ikuenobe CE, Borokini TI, Aigbokhan EI, Egbon IN, Adebayo AR, Igbinosa IB, Okeke CO, Igbinosa EO, Omokhua GA (2014) Chromolaena odorata invasion in Nigeria: A case for coordinated biological control. Manag Biol Invasion 5(4):377–393

    Article  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13(2):235–245

    Article  PubMed  Google Scholar 

  • Vaz AS, Kueffer C, Kull CA, Richardson DM, Vicente JR, Kühn I, Schröter M, Hauck J, Bonn A, Honrado JP (2017) Integrating ecosystem services and disservices: insights from plant invasions. Ecosyst Services 23:94–107

    Article  Google Scholar 

  • Venette R (2013) Incorporating climate change into pest risk models for forest pathogens: a role for cold stress in an era of global warming? NeoBiota 18:131–150

    Article  Google Scholar 

  • Vicente J, Alves P, Randin C, Guisan A, Honrado J (2010) What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography 33(6):1081–1092

    Article  Google Scholar 

  • Vicente J, Randin CF, Gonçalves J, Metzger MJ, Lomba Â, Honrado J, Guisan A (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13(5):1209–1227

    Article  Google Scholar 

  • Vicente JR, Fernandes RF, Randin CF, Broennimann O, Gonçalves J, Marcos B, Pôças I, Alves P, Guisan A, Honrado JP (2013) Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J Environ Manag 131:185–195

    Article  CAS  Google Scholar 

  • Vilà M, Basnou C, PyÅ¡ek P, Josefsson M, Genovesi P, Gollasch S, Nentwig W, Olenin S, Roques A, Roy D, Hulme PE (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European cross-taxa assessment. Front Ecol Environ 8(3):135–144

    Article  Google Scholar 

  • Vinodia S, Dixit AK (2017) Habenaria diphylla (Nimmo) Dalzell: a new addition to the Orchid flora of Bilaspur district (CG), Central India. Curr Bot 8:60–65

    Google Scholar 

  • Vitousek PM, Antonio CM, Loope LL, Westbrooks R (1996) Biological Invasions as global environmental change. Am Sci 84(5):468

    Google Scholar 

  • Wagh VV, Jain AK (2015) Invasive alien flora of Jhabua district, Madhya Pradesh, India. Int J Biodivers Conserv 7(4):227–237

    Article  Google Scholar 

  • Walther GR, Roques A, Hulme PE, Sykes MT, PyÅ¡ek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czucz B (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24(12):686–693

    Article  PubMed  Google Scholar 

  • Wang S, Niu S (2016) Do Biological Invasions by Eupatorium adenophorum increase forest fire severity? Biol Invasions 18(3):717–729

    Article  Google Scholar 

  • Weber EF (1997) The alien flora of Europe: a taxonomic and biogeographic review. J Veg Sci 8(4):565–572

    Article  Google Scholar 

  • Weber E, Sun SG, Li B (2008) Invasive alien plants in China: diversity and ecological insights. Biol Invasions 10(8):1411–1429

    Article  Google Scholar 

  • Whitmore TC (1990) An introduction to tropical rain forests. Clarendon Press, Oxford, p 226

    Google Scholar 

  • Williams JR (1954) The biological control of weeds. Report of the Sixth Commonwealth Entomological Congress London United Kingdom, pp 95–98

    Google Scholar 

  • Williamson M (1996) Biological Invasions. Chapman and Hall London

    Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77(6):1661–1666

    Article  Google Scholar 

  • Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24(3):136–144

    Article  PubMed  Google Scholar 

  • Xu H, Qiang S, Han Z, Guo J, Huang Z, Sun H, He S, Ding H, Wu H, Wan F (2004) The distribution and introduction pathway of alien invasive species in China. Biodiv Sci 12(6):626–638

    Google Scholar 

  • Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, Gabler CA, Li B, Siemann E (2013) Plant-soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol Biochem 65:78–85

    Article  CAS  Google Scholar 

  • Yannelli FA, Hughes P, Kollmann J (2017) Preventing plant invasions at early stages of revegetation: The role of limiting similarity in seed size and seed density. Ecol Eng 100:286–290

    Article  Google Scholar 

  • Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16(8):454–459

    Article  Google Scholar 

  • Zimmermann TG, Andrade AC, Richardson DM (2017) Abiotic barriers limit tree invasion but do not hamper native shrub recruitment in invaded stands. Biol Invasions 19(1):109–129

    Article  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their constructive comments on a previous version of this review. The first author is thankful to Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, for funding under National Post-Doctoral Fellowship Scheme (Ref. No.: PDF/2015/000447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Latif Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, J.A. et al. (2019). Invasive Species and Their Impact on Tropical Forests of Central India: A Review. In: Garkoti, S., Van Bloem, S., Fulé, P., Semwal, R. (eds) Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-8249-9_5

Download citation

Publish with us

Policies and ethics