Advertisement

Multi-response Optimization of Burnishing of Friction-Welded AA6082-T6 Using Principal Component Analysis

  • R. S. TajaneEmail author
  • P. J. Pawar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)

Abstract

Ball burnishing is employed as post-welding treatment for AA6082-T6 friction-welded part to enhance surface and surface properties. In this paper, the principal component analysis was employed as a tool of multi-response optimization, to investigate the effect of control parameters on multiple responses of burnishing process. Four controllable factors such as burnishing speed, burnishing feed, burnishing force, and number of passes at five levels each and three responses such as surface roughness, surface hardness, and tensile strength were studied. The optimum combination of control parameters and their levels for multiple responses based on the total principal component was determined. The analysis of variance was used to find out the most influential burnishing parameter for the multiple responses problems. The overall performance index of optimal level of parameters (0.9562) is calculated; it reveals that the principal component analysis can effectively acquire the optimal combination of burnishing parameters.

Keywords

Friction welding Ball burnishing Multi-response optimization Principal component analysis Analysis of variance 

References

  1. 1.
    Wang, B., Xue, S., Ma, C., Han, Y., Lin, Z.: Effect of combinative addition of Ti and Sr on modification of AA4043 welding wire and mechanical properties of AA6082 welded by TIG welding. Trans. Nonferrous Met. Soc. China 27(2), 272–281 (2017).  https://doi.org/10.1016/S1003-6326(17)60031-1CrossRefGoogle Scholar
  2. 2.
    Idris, M., Ismail, S., Bahari, M.J., Shuib, N.: Thermal deformation of gas metal arc welding on aluminum alloy T-joints. Eng. Solid Mech. 21–26 (2018).  https://doi.org/10.5267/j.esm.2017.11.003
  3. 3.
    Hornbach, D., Mason, P.: Improving corrosion fatigue performance of AA2219 friction stir welds with low plasticity burnishing. In: International Surface Engineering Conference. pp. 1–7 (2002)Google Scholar
  4. 4.
    Prevéy, P., Mahoney, M.: Improved fatigue performance of friction stir welds with low plasticity burnishing. Residual stress design and fatigue performance assessment. In: Proceedings Thermec. pp. 1–7 (2003)CrossRefGoogle Scholar
  5. 5.
    Loh, N.H., Tam, S.C.: Effects of ball burnishing parameters on surface finish—a literature survey and discussion. Precis. Eng. 10(4), 215–220 (1988).  https://doi.org/10.1016/0141-6359(88)90056-6CrossRefGoogle Scholar
  6. 6.
    Yeldose, B.C., Ramamoorthy, B.: An investigation into the high performance of TiN-coated rollers in burnishing process. J. Mater. Process. Technol. 207(1–3), 350–355 (2008).  https://doi.org/10.1016/j.jmatprotec.2008.06.058CrossRefGoogle Scholar
  7. 7.
    Scheel, J., Prevéy, P., Hornbach, D.: Safe life conversion of aircraft aluminum structures via low plasticity burnishing for mitigation of corrosion related failures. In: Presented at Department of Defense Corrosion Conference, Washington DC. pp. 1–16 (2009)Google Scholar
  8. 8.
    Hassan, A.M., Momani, A.M.: Further improvements in some properties of shot peened components using the burnishing process. Int. J. Mach. Tools Manuf. 40(12), 1775–1786 (2000).  https://doi.org/10.1016/S0890-6955(00)00018-3CrossRefGoogle Scholar
  9. 9.
    Hassan, A.M.: Improvements in some properties of non-ferrous metals by the application of the ball burnishing process. J. Mater. Process. Technol. 59, 250–256 (1996)CrossRefGoogle Scholar
  10. 10.
    Hassan, A.M.: The effects of ball- and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. J. Mater. Process. Technol. 72, 385–391 (1997)CrossRefGoogle Scholar
  11. 11.
    Prevey, P.S., Hornbach, D.J., Jayaraman, N.: Controlled plasticity burnishing to improve the performance of friction stir processed Ni-Al Bronze. In: Proceedings Thermec. Canada. pp. 2–7 (2006). www.lambdatechs.com
  12. 12.
    Yu, X., Wang, L.: Effect of various parameters on the surface roughness of an aluminium alloy burnished with a spherical surfaced polycrystalline diamond tool. Int. J. Mach. Tools Manuf. 39, 459–469 (1999)CrossRefGoogle Scholar
  13. 13.
    El-Axir, M.H.: Investigation into roller burnishing. Int. J. Mach. Tools Manuf. 40(11), 1603–1617 (2000).  https://doi.org/10.1016/S0890-6955(00)00019-5CrossRefGoogle Scholar
  14. 14.
    Loh, N.H., Tam, S.C.: A study of the effects of ball-burnishing parameters on surface roughness using factorial design. J. Mech. Work. Technol. 18, 53–61 (1989)CrossRefGoogle Scholar
  15. 15.
    Ross, P.J.: Taguchi Techniques for Quality Engineering. Mc Graw-Hill, New York (1996)Google Scholar
  16. 16.
    Zhang, T., Bugtai, N., Marinescu, I.D.: Burnishing of aerospace alloy: a theoretical-experimental approach. J. Manuf. Syst. 2–8 (2014).  https://doi.org/10.1016/j.jmsy.2014.11.004CrossRefGoogle Scholar
  17. 17.
    El-Khabeery, M.M., El-Axir, M.H.: Experimental techniques for studying the effects of milling roller-burnishing parameters on surface integrity. Int. J. Mach. Tools Manuf. 41(12), 1705–1719 (2001).  https://doi.org/10.1016/S0890-6955(01)00036-0CrossRefGoogle Scholar
  18. 18.
    Sagbas, A.: Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function. Adv. Eng. Softw. 42(11), 992–998 (2011).  https://doi.org/10.1016/j.advengsoft.2011.05.021CrossRefGoogle Scholar
  19. 19.
    Esme, U.: Use of grey based Taguchi method in ball burnishing process for the optimization of surface roughness and microhardness of AA 7075 aluminum alloy. Mater. Technol. 44(3), 129–135 (2010). http://www.scopus.com/inward/record.url?eid=2-s2.0-79951519669&partnerID=40&md5=9a1d486851f2b34944b21d1864eacdb1
  20. 20.
    El-Axir, M.H., Othman, O.M., Abodiena, A.M.: Improvements in out-of-roundness and microhardness of inner surfaces by internal ball burnishing process. J. Mater. Process. Technol. 196(1–3), 120–128 (2008).  https://doi.org/10.1016/j.jmatprotec.2007.05.028CrossRefGoogle Scholar
  21. 21.
    Fung, C., Kang, P.: Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. J. Mater. Process. Technol. 170, 602–610 (2005).  https://doi.org/10.1016/j.jmatprotec.2005.06.040CrossRefGoogle Scholar
  22. 22.
    Lu, H.S., Chang, C.K., Hwang, N.C., Chung, C.T.: Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. J. Mater. Process. Technol. 209, 3808–3817 (2008).  https://doi.org/10.1016/j.jmatprotec.2008.08.030CrossRefGoogle Scholar
  23. 23.
    Ancio, F., Gámez, A.J., Marcos, M.: Study of turned surfaces by principal component analysis. Precis. Eng. (2015).  https://doi.org/10.1016/j.precisioneng.2015.09.006CrossRefGoogle Scholar
  24. 24.
    Shiou, F.J., Chen, C.H.: Freeform surface finish of plastic injection mold by using ball-burnishing process. J. Mater. Process. Technol. 140, 248–254 (2003).  https://doi.org/10.1016/S0924-0136(03)00750-7CrossRefGoogle Scholar
  25. 25.
    Li, L.F., Xia, W., Yao, Z.Z., Zhao, J., Tang, Z.Q.: Analytical prediction and experimental verification of surface roughness during the burnishing process. Int. J. Mach. Tools Manuf. 62, 67–75 (2012).  https://doi.org/10.1016/j.ijmachtools.2012.06.001CrossRefGoogle Scholar
  26. 26.
    Seemikeri, C.Y., Brahmankar, P.K., Mahagaonkar, S.B.: Investigations on surface integrity of AISI 1045 using LPB tool. Tribol. Int. 41(8), 724–734 (2008).  https://doi.org/10.1016/j.triboint.2008.01.003CrossRefGoogle Scholar
  27. 27.
    Low, K.O., Wong, K.J.: Influence of ball burnishing on surface quality and tribological characteristics of polymers under dry sliding conditions. Tribol. Int. 44(2), 144–153 (2011).  https://doi.org/10.1016/j.triboint.2010.10.005CrossRefGoogle Scholar
  28. 28.
    Hassan, A.M., Maqableh, A.M.: The effects of initial burnishing parameters on non-ferrous components. J. Mater. Process. Technol. 102(1), 115–121 (2000).  https://doi.org/10.1016/S0924-0136(00)00464-7CrossRefGoogle Scholar
  29. 29.
    Antony, J.: Multi-response optimization in industrial experiments using Taguchis quality loss function and principal component analysis. Qual. Reliab. Eng. Int. 16, 3–8 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Production EngineeringK. K. Wagh Institute of Engineering Education and ResearchNasikIndia
  2. 2.Savitribai Phule Pune UniversityPuneIndia

Personalised recommendations