Advertisement

Development of Plant Layout for Improving Organizational Effectiveness by Hybridizing GT, TOPSIS and SLP

  • Biswanath Chakraborty
  • Santanu DasEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)

Abstract

A well-designed and interconnected spatial arrangement is the objective of developing a plant layout which consists mainly of processing units, warehouses and administrative section. A good layout would improve processing of a manufacturing unit. There are numerous constraints like safety, construction design, maintenance, operations of machines, retrofit and pallet load which must be balanced economically towards optimizing organizational effectiveness. The present work is concerned about developing a plant layout which will be effective both economically and functionally. Amalgamating three techniques like group technology (GT), TOPSIS and systematic layout planning (SLP), one model has been developed to create an effective plant layout.

Keywords

Plant layout Spatial arrangement Retrofit Pallet load GT TOPSIS SLP 

References

  1. 1.
    Bhopal Gas Tragedy Verdict in June after 26-Year Wait. https://www.thehindu.com/news/national/Bhopal-gas-tragedy-verdict-in-June-after-26-year-wait/article 16301057.ece
  2. 2.
  3. 3.
    Jayakumar, S., Reklaitis, G.V.: Chemical plant layout via graph partitioning-1 single level. Comput. Chem. Eng. 18, 441–458 (1994).  https://doi.org/10.1016/0098-1354(94)88022-0CrossRefGoogle Scholar
  4. 4.
    Jayakumar, S., Reklaitis, G.V.: Chemical plant layout via graph partitioning—II multiple levels. Comput. Chem. Eng. 20, 563–578 (1996).  https://doi.org/10.1016/0098-1354(95)00208-1CrossRefGoogle Scholar
  5. 5.
    Penteado, F.D., Ciric, A.R.: An MINLP approach for safe process plant layout. Ind. Eng. Chem. Res. 35(4), 1354–1361 (1996).  https://doi.org/10.1021/ie9502547CrossRefGoogle Scholar
  6. 6.
    Georgiadis, M.C., Rotstein, G.E., Macchietto, S.: Optimal layout design in multipurpose batch plants. Ind. Eng. Chem. Res. 36(11), 4852–4863 (1997).  https://doi.org/10.1021/ie9702845CrossRefGoogle Scholar
  7. 7.
    Georgiadis, M.C., Schilling, G., Rotstein, G.E., Macchietto, S.: A general mathematical programming approach for process plant layout. Ind. Eng. Chem. Res. 23(7), 823–840 (1999).  https://doi.org/10.1016/S0098-1354(99)00005-8CrossRefGoogle Scholar
  8. 8.
    Papageorgiou, L.G., Rotstein, G.E.: Continuous-domain mathematical models for optimal process plant layout. Ind. Eng. Chem. Res. 37(9), 3631–3639 (1998).  https://doi.org/10.1021/ie980146vCrossRefGoogle Scholar
  9. 9.
    Patsiatzis, D.I., Papageorgiou, L.G.: Safe Process Plant Layout Using Mathematical Programming. Eur. Symp. Comput. Aided Process Eng. 12, 295–300 (2002)Google Scholar
  10. 10.
    Patsiatzis, D.I., Papageorgiou, L.G.: Optimal multi-floor process plant layout. Comput. Aided Chem. Eng. 9, 475–480 (2001).  https://doi.org/10.1016/S1570-7946(01)80074-2CrossRefGoogle Scholar
  11. 11.
    Patsiatzis, D.I., Knight, G., Papageorgiou, L.G.: An MILP approach to safe process plant layout. Chem. Eng. Res. Des. 82(5), 579–586 (2004).  https://doi.org/10.1205/026387604323142612CrossRefGoogle Scholar
  12. 12.
    Abdul-Hamid, Y.T., Kochhar, A.K., Khan, M.K.: An analytic hierarchy process approach to the choice of manufacturing plant layout. Proc. Inst. Mech. Eng, Part B: J. Eng. Manuf. 213(4), 397–406 (1999).  https://doi.org/10.1243/0954405991516868CrossRefGoogle Scholar
  13. 13.
    Yang, T., Kuo, C.: A hierarchical AHP/DEA methodology for the facilities layout design problem. Eur. J. Oper. Res. 147(1), 128–136 (2003).  https://doi.org/10.1016/S0377-2217(02)00251-5CrossRefzbMATHGoogle Scholar
  14. 14.
    Yang, T., Hung, C.C.: Multiple-attribute decision making methods for plant layout design problem. Robot. Comput. Integr. Manuf. 23(1), 126–137 (2007).  https://doi.org/10.1016/j.rcim.2005.12.002CrossRefGoogle Scholar
  15. 15.
    Azadeh, A., Izadbakhsh, H.R.: A multi-variate/multi-attribute approach for plant layout design. Int. J. Ind. Eng. 15(2), 143–154 (2008)Google Scholar
  16. 16.
    Wiyaratn, W., Watanapa, A.: Improvement plant layout using systematic layout planning (SLP) for increased productivity. Int. J. Ind. Manuf. Eng. 4(12), 1382–1386 (2010)Google Scholar
  17. 17.
    Tak, C.S., Yadav, L.: Improvement in Layout Design using SLP of a small size manufacturing unit: a case study. IOSR J. Eng. 2(10), 1–7 (2012)Google Scholar
  18. 18.
    Zhou, D.W., Wang, L.T., Feng, L.Y., Zhao, D.Z., Guan, T.S.: Research on Improvement of Plant Layout Based on Process Analysis. In: Proceedings of the 21st International Conference on Industrial Engineering and Engineering Management, pp. 253–256 (2014).  https://doi.org/10.2991/978-94-6239-102-4_53CrossRefGoogle Scholar
  19. 19.
    Ojaghi, Y., Khademi, A., Yusof, N.M., Renani, N.G., bin Syed Hassan, S.A.: Production layout optimization for small and medium scale food industry. Procedia CIRP 26, 247–251 (2015).  https://doi.org/10.1016/j.procir.2014.07.050CrossRefGoogle Scholar
  20. 20.
    Barnwal, S., Dharmadhikari, P.: Optimization of plant layout using SLP method. Int. J. Innov. Res. Sci. Eng. Technol. 5(3), 3008–3015 (2016).  https://doi.org/10.15680/IJIRSET.2016.0503046CrossRefGoogle Scholar
  21. 21.
    Muther, R., Hales, L.: Systematic Layout Planning: Management and Industrial Research Publications, 4th edn, Marietta, GA 30067, USA (2015)Google Scholar
  22. 22.
    Naqvi, S.A.A., Fahad, M., Atir, M., Zubair, M., Shehzad, M.M.: Productivity improvement of a manufacturing facility using systematic layout planning. Cogent Eng. 3, 1–13 (2016).  https://doi.org/10.1080/23311916.2016.1207296CrossRefGoogle Scholar
  23. 23.
    Burbidge, J.L.: Production flow analysis. IEEE Xplore Digital Library 50(4.5):139–152 (1971).  https://doi.org/10.1049/tpe:19710022
  24. 24.
    Chakraborty, B., Das, S.: Optimization of production scheduling using critical path method and line of balance in group technology. Ind. Eng. J. 8(8), 35–42 (2015)Google Scholar
  25. 25.
    Chakraborty, B., Das, S.: Evaluation criteria of project risk and decision making through beta analysis and TOPSIS towards achieving organizational effectiveness. In: Proceedings of the Computational Intelligence, Communications, and Business Analytics, Kalyani, India, p. 71 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKalyani Government Engineering CollegeKalyaniIndia

Personalised recommendations