Advertisement

Selection of Coating and Nitriding Process for AISI 4140 Steel Material to Enhance Tribological Properties

  • Pathan FirojkhanEmail author
  • Nikhil Kadam
  • S. G. Dambhare
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)

Abstract

The Multi Criteria Decision method is used for selection of coating and nitriding process is VIKOR (VIšekriterijumsko Rangiranje) method. Analytical hierarchy process (AHP) and entropy methods are used to find out weightages for the material criteria like Young’s modulus (E), hardness (H), H/E, and H3/E2. The VIKOR is applied to the five alternatives, namely AISI 4140 alloy steel, nitrided AISI 4140 alloy steel, nitrided and TiN-coated AISI 4140 alloy steel, nitrided and TiAlN-coated AISI 4140 alloy steel, and nitrided and WCC-coated AISI 4140 alloy steel. The experiment is performed on the universal testing machine and hardness testing machine which is then used for analysis. Nitrided and WCC-coated AISI 4140 alloy steel is predicted to be the best suitable material for the bearing materials.

Keywords

AHP Entropy method VIKOR method results 

References

  1. 1.
    Shtansky, D.V., Sheveiko, A.N., Petrzhik, M.I., Kiryukhantsev-Korneev, F.V., Levashov, E.A., Leyland, A.: Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings. Surf. Coat. Technol. 200, 208–212 (2005)CrossRefGoogle Scholar
  2. 2.
    Musil, J.: Hard and super hard nanocomposite coatings. Surf. Coat. Technol. 125, 322–330 (2000)CrossRefGoogle Scholar
  3. 3.
    Edwards, K.L.: Materials influence on design: a decade of development. Mater. Des. 32, 1073–1080 (2011)CrossRefGoogle Scholar
  4. 4.
    Caliskan, H.: Selection of boron-based tribological hard coatings using multi-criteria decision-making methods. Mater. Des. 50, 742–749 (2013)CrossRefGoogle Scholar
  5. 5.
    Rathod, M.K., Kanzaria, H.V.: A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment. Mater. Des. 50, 742–749 (2011)Google Scholar
  6. 6.
    Jahan, A., Ismail, M.Y., Mustapha, F., Sapuan, S.M.: Material selection based on ordinal data. Mater. Des. 31, 3180–3187 (2010)CrossRefGoogle Scholar
  7. 7.
    Maity, S.R., Chatterjee, P., Chakraborty, S.: Cutting tool material selection using grey complex proportional assessment method. Mater. Des. Des 36, 372–378 (2012)CrossRefGoogle Scholar
  8. 8.
    Chauhan, A., Vaish, R.: A comparative study on material selection for micro-electromechanical systems. Mater. Des. 41, 177–181 (2012)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, P., Chakraborty, S.: Material selection using preferential ranking methods. Mater. Des. 35, 384–393 (2012)CrossRefGoogle Scholar
  10. 10.
    Shanian, A., Savadogo, O.: A material selection model based on the concept of multiple attribute decision making. Mater. Des. 27, 329–337 (2006)CrossRefGoogle Scholar
  11. 11.
    Gupta, N.: Material selection for thin-film solar cells using multiple attribute decision-making approach. Mater. Des. 32, 1667–1671 (2011)CrossRefGoogle Scholar
  12. 12.
    Dağdeviren, M., Yavuz, S., Kılınç, N.: Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Syst. Appl. 36, 8143–8151 (2009)CrossRefGoogle Scholar
  13. 13.
    Pathan, F., Gurav, H., Gujrathi, S.: Optimization for tribological properties of glass fiber-reinforced PTFE composites with grey relational analysis. J. Mater. (2016)Google Scholar
  14. 14.
    Jahan, A., Edwards, K.L.: VIKOR method results for material selection problems with interval numbers and target-based criteria. Mater. Des. 47, 759–765 (2013)CrossRefGoogle Scholar
  15. 15.
    Leyland, A., Matthews, A.: On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior. Wear 246, 1–11 (2000)CrossRefGoogle Scholar
  16. 16.
    Tsui, T.Y., Pharr, G.M., Oliver, W.C., Bhatia, C.S., White, R.L., Anders, S., et al.: Nanoindentation and Nano Scratching of Hard Carbon Coatings for Magnetic Disks. In: Proceedings of Materials Research Society Symposium, San Francisco, pp. 447–52 (1995)Google Scholar
  17. 17.
    Chauhan, A., Vaish, R.: Hard coating material selection using multi-criteria decision making. Mater. Des. 44, 240–245 (2013)CrossRefGoogle Scholar
  18. 18.
    Kao, P.S., Hocheng, H.: Optimization of electrochemical polishing of stainless steel by grey relational analysis. J. Mater. Process. Technol. 140, 255–259 (2003)CrossRefGoogle Scholar
  19. 19.
    Lin, C.L.: Use of the Taguchi Method and grey relational analysis to optimize turning operations with multiple performance characteristics. Mater. Manuf. Processes 19(2), 209–220 (2004)CrossRefGoogle Scholar
  20. 20.
    Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Pathan Firojkhan
    • 1
    Email author
  • Nikhil Kadam
    • 2
  • S. G. Dambhare
    • 1
  1. 1.Department of MechanicalDr. D. Y. Patil Institute of Engineering, Management, and ResearchPuneIndia
  2. 2.Bits Pilani K K Birla Goa CampusGoaIndia

Personalised recommendations