Dependency of Bead Geometry Formation During Weld Deposition of 316 Stainless Steel Over Constructional Steel Plate

  • M. K. Saha
  • S. Sadhu
  • P. Ghosh
  • A. Mondal
  • R. Hazra
  • S. DasEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)


Weld bead geometry influences mechanical properties, microstructure of the weld joint or weld overlay. It is much biased by heat input of a particular welding technique. In current work, weld bead of 316 austenitic stainless steel is produced on E250 low alloy steel by gas metal arc welding process using 100% carbon dioxide as shielding gas. Nine sets of welding current and welding voltage combinations were chosen for producing nine weld beads, keeping travel speed constant throughout the experiment. Two identical set of experiments were repeated. Experimental results depicted that the width of weld bead, PSF, RFF extended with increment in heat input, while height of reinforcement and depth of penetration declined slightly for the identical condition. Quadratic equations are generated successfully between different bead geometry parameters and heat input by means of polynomial regression analysis which agree with the real data.


Gas metal arc welding Weld bead geometry Heat input Polynomial regression analysis 


  1. 1.
    Saha, M.K., Das S.: A Review on different cladding techniques employed to resist corrosion. J. Assoc. Eng. India 56(1&2) (2016)Google Scholar
  2. 2.
    Saha, M.K., Das, S.: Gas metal arc welding and its anti-corrosive performance—a brief review. Athens J. Techno. Engg. 5(2), 154–174 (2018)Google Scholar
  3. 3.
    Nasir, N.S.M., Razab, M.K.A.A., Ahmad, M.I., Mamat, S.: Influence of heat input on carbon steel microstructure. ARPN J. Eng. Appl. Sci. 12(8), 2689–2697 (2017)Google Scholar
  4. 4.
    Shen, S., Oguocha, I.N.A., Yannacopoulos, S.: Effect of heat input on weld bead geometry of submerged arc welded ASTM A709 Grade 50 steel joints. J. Mater. Proc. Techno. 212(1), 286–294 (2012)CrossRefGoogle Scholar
  5. 5.
    Frei, J., Alexandrov, B.T., Rethmeier, M.: Low heat input gas metal arc welding for dissimilar metal weld overlays part II: the transition zone. Weld. World 62(2), 317–324 (2018)CrossRefGoogle Scholar
  6. 6.
    Frei, J., Alexandrov, B.T., Rethmeier, M.: Low heat input gas metal arc welding for dissimilar metal weld overlays part I: the heat-affected zone. Weld. World. 60(3), 459–473 (2016)CrossRefGoogle Scholar
  7. 7.
    Kah, P., Mvola, B., Suoranta, R., Martikainen, J.: Modified GMAW processes: control of heat input. J. Comput. Theor. Nanosci. 19(3), 710–718 (2013)Google Scholar
  8. 8.
    Sreeraj, P., Kannan, T., Maji, S.: Simulation and parameter optimization of GMAW process using neural networks and particle swarm optimization algorithm. Int. J. Mech. Eng. Robot. Res. 2, 130–146 (2013)Google Scholar
  9. 9.
    Palani, P.K., Murugan, N.: Development of mathematical models for prediction of weld bead geometry in cladding by flux cored arc welding. Int J. Adv. Manu. Tech. 30, 669–676 (2006)CrossRefGoogle Scholar
  10. 10.
    Campbell, S., Galloway, A., McPherson, N.: Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases. Weld. J. 91(6), 174S–181S (2012)Google Scholar
  11. 11.
    Nagesh, D.S., Datta, G.L.: Genetic Algorithm for optimization of welding variables for height to width ratio and application of ANN for Prediction of bead geometry for TIG welding process. Appl. Soft Com. 10, 897–907 (2010)CrossRefGoogle Scholar
  12. 12.
    Sreeraj, P., Kannan, T.: Modelling and prediction of stainless steel clad bead geometry deposited by GMAW using regression and artificial neural network models. Adv. Mech. Eng. 2012, 1–12 (2012)Google Scholar
  13. 13.
    Mondal, A., Saha, M.K., Hazra, R., Das, S.: Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens. Cogent. Eng. 3, 1143598 (2016)CrossRefGoogle Scholar
  14. 14.
    Kannan, T., Yoganandh, J.: Effect of process parameters on clad bead geometry and its shape relationships of stainless steel claddings deposited by GMAW. Int. J. Adv. Manu. Tech. 47, 1083–1095 (2010)CrossRefGoogle Scholar
  15. 15.
    Kolahan, F., Heidari, M.: Modeling and optimization of MAG welding for gas pipelines using regression analysis and simulated annealing algorithm. J. Sci. Ind. Res. 69(4), 177–183 (2010)Google Scholar
  16. 16.
    Saha, M.K., Dhara, L.N., Das, S.: Varıation of Bead Geometry of 316 Austenitic Stainless Steel Weld with Varying Heat Input Using Metal Active Gas Welding. In: National Conference on Leveraging Simulation & Optimisation Techniques for Productivity Enhancement and Manufacturing Excellence, at SNTI, Jamshedpur, Jharkhand, India (2018)Google Scholar
  17. 17.
    Saha, M.K., Hazra, R., Mondal, A., Das, S.: Effect of heat input on geometry of austenite stainless steel weld bead on low alloy steel. J. Inst. Eng. (India): Ser C. (2018).
  18. 18.
    Sharma, A., Verma, D.K., Arora, N.: A scheme of comprehensive assessment of weld bead geometry. Int. J. Adv. Manuf. Techno. 82(9–12), 1507–1515 (2016)CrossRefGoogle Scholar
  19. 19.
    Senthilkumar, B., Kannan, T., Madesh, R.: Optimization of flux-cored arc welding process parameters by using genetic algorithm. Int. J. Adv. Manuf. Tech. 93(1–4), 35–41 (2017)CrossRefGoogle Scholar
  20. 20.
    Sreeraj, P., Kannan, T., Maji, S.: Optimization of process parameters of stainless steel clad bead geometry deposited by GMAW using integrated SA-GA. Int. J. Res. Aeronaut. Mech. Eng. 1(1), 26–52 (2013)Google Scholar
  21. 21.
    Rodrigues, L.O., Paiva, A.P., Costa, S.C.: Optimization of the FCAW process by weld bead geometry analysis. Weld. Int. 23(2), 261–269 (2009)CrossRefGoogle Scholar
  22. 22.
    Gautam, U., Vipin.: Weld bead geometry prediction model by design of experiments for mild steel. Int. J. Mech. Eng. Rob. Res. 3(3), 517–527 (2014)Google Scholar
  23. 23.
    Soares, L.B., Weis, A.A., Rodrigues, R.N., Drews, P. Jr., Guterres, B., Botelho, S.S.C., Filho, N.D.: Seam Tracking and Welding Bead Geometry Analysis for Autonomous Welding Robot. In: Proceedings of Conference IEEE Latin American Robotics Symposium, at Curitiba, Brazil (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. K. Saha
    • 1
  • S. Sadhu
    • 1
  • P. Ghosh
    • 1
  • A. Mondal
    • 1
  • R. Hazra
    • 1
  • S. Das
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringKalyani Government Engineering CollegeKalyani, NadiaIndia

Personalised recommendations