Parametric Optimization of Electrochemical Machining Process Using Taguchi Method and Super Ranking Concept While Machining on Inconel 825

  • Partha Protim DasEmail author
  • Shankar Chakraborty
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)


To exploit the fullest machining potential of electrochemical machining (ECM) process while machining on Inconel 825, it is recommended to operate the machine with the optimal combination of machining process parameters. Past researchers have already applied grey relational analysis (GRA) as an optimization tool so as to obtain the optimal parametric combination of ECM process. In this paper, based on the experimental data obtained by the past researchers, Taguchi method and super ranking concept is applied to analyze the efficacy of the proposed approach in obtaining the optimal parametric combination of ECM process. The derived parametric combination is validated with respect to the predicted response values, obtained from the developed regression equations which show that the proposed approach results in improved response values than that obtained by past researchers. Finally, Analysis of variance (ANOVA) is applied to identify the influence of each process parameters for the considered ECM process.


Taguchi method Super ranking ECM process Optimization Process parameter Response ANOVA 


  1. 1.
    El-Hofy, H.: Advanced Machining Processes: Nontraditional and Hybrid Machining Processes. McGraw-Hill, New York (2005)Google Scholar
  2. 2.
    Jain, N.K., Jain, V.K.: Optimization of electro-chemical machining process parameters using genetic algorithms. Mach. Sci. Technol. 11(2), 235–258 (2007)CrossRefGoogle Scholar
  3. 3.
    Asokan, P., Kumar, R.R., Jeyapaul, R., Santhi, M.: Development of multi-objective optimization models for electrochemical machining process. Int. J. Adv. Manuf. Technol. 39(1–2), 55–63 (2008)CrossRefGoogle Scholar
  4. 4.
    Rao, R., Yadava, V.: Multi-objective optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Opt. Laser Technol. 41(8), 922–930 (2009)CrossRefGoogle Scholar
  5. 5.
    Mukherjee, R., Chakraborty, S.: Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm. Int. J. Adv. Manuf. Technol. 64(5–8), 781–791 (2013)CrossRefGoogle Scholar
  6. 6.
    Tang, L., Yang, S.: Experimental investigation on the electrochemical machining of 00Cr12Ni9Mo4Cu2 material and multi-objective parameters optimization. Int. J. Adv. Manuf. Technol. 67(9–12), 2909–2916 (2013)CrossRefGoogle Scholar
  7. 7.
    Lal, S., Kumar, S., Khan, Z.A., Siddiquee, A.N.: Multi-response optimization of wire electrical discharge machining process parameters for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis. Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 229(2), 229–237 (2015)CrossRefGoogle Scholar
  8. 8.
    Bose, G.K.: Multi objective optimization of ECG process under fuzzy environment. Multidiscip. Model. Mater. Struct. 11(3), 350–371 (2015)CrossRefGoogle Scholar
  9. 9.
    Rao, S.R., Padmanabhan, G.: Parametric optimization in electrochemical machining using utility based Taguchi method. Int. J. Eng. Sci. Technol. 10(1), 81–96 (2015)Google Scholar
  10. 10.
    Mehrvar, A., Basti, A., Jamali, A.: Optimization of electrochemical machining process parameters: combining response surface methodology and differential evolution algorithm. Proc. Inst. Mech. Eng. E: J. Proc. Mech. Eng. 231(6), 1114–1126 (2017)CrossRefGoogle Scholar
  11. 11.
    Rahang, M., Patowari, P.K.: Parametric optimization for selective surface modification in EDM using Taguchi analysis. Mater. Manuf. Processes 31(4), 422–431 (2016)CrossRefGoogle Scholar
  12. 12.
    Dhuria, G.K., Singh, R., Batish, A.: Application of a hybrid Taguchi-entropy weight-based GRA method to optimize and neural network approach to predict the machining responses in ultrasonic machining of Ti–6Al–4V. J. Braz. Soc. Mech. Sci. Eng. 39(7), 2619–2634 (2017)CrossRefGoogle Scholar
  13. 13.
    Antil, P., Singh, S., Manna, A.: Electrochemical discharge drilling of SiC reinforced polymer matrix composite using Taguchi’s grey relational analysis. Arab. J. Sci. Eng. 43(3), 1257–1266 (2018)CrossRefGoogle Scholar
  14. 14.
    Cole, K.M., Kirk, D.W., Singh, C.V., Thorpe, S.J.: Optimizing electrochemical micromachining parameters for Zr-based bulk metallic glass. J. Manuf. Processes. 25, 227–234 (2017)CrossRefGoogle Scholar
  15. 15.
    Manikandan, N., Kumanan, S., Sathiyanarayanan, C.: Multiple performance optimization of electrochemical drilling of Inconel 625 using Taguchi based grey relational analysis. Eng. Sci. Technol. Int. J. 20(2), 662–671 (2017)CrossRefGoogle Scholar
  16. 16.
    Chakraborty, S., Das, P.P., Kumar, V.: Application of grey-fuzzy logic technique for parametric optimization of non-traditional machining processes. Grey Syst.: Theory Appl. 8(1), 46–68 (2018)CrossRefGoogle Scholar
  17. 17.
    Taddese, F.: Parameter optimization of ECH process for surface finish on ASTM-35 cast iron. Int. J. Adv. Manuf. Technol. 1–12 (2018)Google Scholar
  18. 18.
    Chakraborty, S., Das, P.P.: A multivariate quality loss function approach for parametric optimization of non-traditional machining processes. Manag. Sci. Lett. 8(8), 873–884 (2018)CrossRefGoogle Scholar
  19. 19.
    Taguchi, G.: Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3) (1986)Google Scholar
  20. 20.
    Taguchi, G., Konishi, S.: Taguchi methods: Orthogonal arrays and linear graphs: tools for quality engineering, Amer. Suppl. Inst. (1987)Google Scholar
  21. 21.
    Besseris, G.J.: Multi-response optimisation using Taguchi method and super ranking concept. J. Manuf. Technol. Manag. 19(8), 1015–1029 (2008)CrossRefGoogle Scholar
  22. 22.
    Nayak, A.A., Gangopadhyay, S., Sahoo, D.K.: Modelling, simulation and experimental investigation for generating ‘I’shaped contour on Inconel 825 using electro chemical machining. J. Manuf. Processes. 23, 269–277 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSikkim Manipal Institute of Technology, Sikkim Manipal UniversityMajitarIndia
  2. 2.Department of Production EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations