Advertisement

Optimization of Water Releases from Ukai Reservoir Using Jaya Algorithm

  • Vijendra KumarEmail author
  • S. M. Yadav
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)

Abstract

The scarcity of water resources is one of the most pervasive natural resource allocation problems faced by the water users and policymakers. Reservoir operation is the best solution to obtain its utmost possible performance. In the present study, the Jaya algorithm (JA) has been applied to optimize the water releases from Ukai reservoir at different dependable inflows. The model is optimized for four different dependable inflows namely 60, 65, 70, and 75%. The results from JA are compared with teaching–learning-based optimization (TLBO), particle swarm optimization (PSO), differential evolution (DE), and linear programming (LP). It was observed that JA performed better than TLBO, PSO, DE, and LP. The global optimum solution obtained using JA for 60, 65, 70, and 75% dependable inflow are 3224.620, 4023.200, 4672.800, and 5351.120, respectively in MCM. Based on the results, it is concluded that JA outperformed over TLBO, PSO, DE, and LP.

Keywords

Optimization Reservoir operation Jaya algorithm Ukai dam Teaching–learning-based optimization 

Notes

Acknowledgements

The authors like to thank Dr. R. V. Rao, Professor, Mechanical Engineering Department, SVNIT, and Mr. Ankit Saroj Research Scholar, SVNIT, for helping and guiding. The authors would also like to acknowledge with deep sense of gratitude the valuable help received from the authorities of Sardar Vallabhbhai National Institute of Technology (SVNIT) and the P. G. Section of Water Resources Engineering.

References

  1. 1.
    Mansouri, R., Torabi, H., Hoseini, M., Morshedzadeh, H.: Optimization of the water distribution networks with differential evolution (DE) and mixed integer linear programming (MILP). J. Water Resour. Prot. 07, 715–729 (2015).  https://doi.org/10.4236/jwarp.2015.79059CrossRefGoogle Scholar
  2. 2.
    Adeyemo, J., Otieno, F.: Differential evolution algorithm for solving multi-objective crop planning model. Agric. Water Manag. 97, 848–856 (2010).  https://doi.org/10.1016/j.agwat.2010.01.013CrossRefGoogle Scholar
  3. 3.
    Torabi Pudeh, H., Mansouri, R., Haghiabi, A.H., Yonesi, H.A.: Optimization of hydraulic-hydrologic complex system of reservoirs and connecting tunnel. Water Resour. Manag. 30, 5177–5191 (2016).  https://doi.org/10.1007/s11269-016-1477-5CrossRefGoogle Scholar
  4. 4.
    Zeng, X., Kang, S., Li, F., Zhang, L., Guo, P.: Fuzzy multi-objective linear programming applying to crop area planning. Agric. Water Manag. 98, 134–142 (2010).  https://doi.org/10.1016/j.agwat.2010.08.010CrossRefGoogle Scholar
  5. 5.
    Hosseini-Moghari, S.M., Morovati, R., Moghadas, M., Araghinejad, S.: Optimum operation of reservoir using two evolutionary algorithms: imperialist competitive algorithm (ICA) and cuckoo optimization algorithm (COA). Water Resour. Manag. 29, 3749–3769 (2015).  https://doi.org/10.1007/s11269-015-1027-6CrossRefGoogle Scholar
  6. 6.
    Ravansalar, M., Rajaee, T., Kisi, O.: Wavelet-linear genetic programming: a new approach for modeling monthly streamflow. J. Hydrol. 549, 461–475 (2017).  https://doi.org/10.1016/j.jhydrol.2017.04.018CrossRefGoogle Scholar
  7. 7.
    Azizipour, M., Ghalenoei, V., Afshar, M.H., Solis, S.S.: Optimal operation of hydropower reservoir systems using weed optimization algorithm. Water Resour. Manag. 30, 3995–4009 (2016).  https://doi.org/10.1007/s11269-016-1407-6CrossRefGoogle Scholar
  8. 8.
    Afshar, A., Bozorg Haddad, O., Mariño, M.A.A., Adams, B.J.J.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Franklin Inst. 344, 452–462 (2007).  https://doi.org/10.1016/j.jfranklin.2006.06.001CrossRefzbMATHGoogle Scholar
  9. 9.
    Shamim, M.A., Hassan, M., Ahmad, S., Zeeshan, M.: A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE J. Civ. Eng. 20, 971–977 (2016).  https://doi.org/10.1007/s12205-015-0298-zCrossRefGoogle Scholar
  10. 10.
    Ming, B., Chang, J.X., Huang, Q., Wang, Y.M., Huang, S.Z.: Optimal operation of multi-reservoir system based-on cuckoo search algorithm. Water Resour. Manag. 29, 5671–5687 (2015).  https://doi.org/10.1007/s11269-015-1140-6CrossRefGoogle Scholar
  11. 11.
    Ehteram, M., Karami, H., Mousavi, S.F., El-Shafie, A., Amini, Z.: Optimizing dam and reservoirs operation based model utilizing shark algorithm approach. Knowl.-Based Syst. 122, 26–38 (2017).  https://doi.org/10.1016/j.knosys.2017.01.026CrossRefGoogle Scholar
  12. 12.
    Venkata Rao, R.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 19–34 (2016).  https://doi.org/10.5267/j.ijiec.2015.8.004CrossRefGoogle Scholar
  13. 13.
    Rao, R.V., Waghmare, G.G.: A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optim. 0273, 1–24 (2016).  https://doi.org/10.1080/0305215x.2016.1164855CrossRefGoogle Scholar
  14. 14.
    Rao, R.V., More, K.C., Taler, J., Oclon, P.: Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Appl. Therm. Eng. 103, 572–582 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.04.135CrossRefGoogle Scholar
  15. 15.
    Gao, K., Zhang, Y., Sadollah, A., Lentzakis, A., Su, R.: Jaya, harmony search and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem. Swarm Evol. Comput. 37, 58–72 (2017).  https://doi.org/10.1016/j.swevo.2017.05.002CrossRefGoogle Scholar
  16. 16.
    Huang, C., Wang, L., Yeung, R.S.-C., Zhang, Z., Chung, H.S.-H., Bensoussan, A.: A prediction model-guided Jaya algorithm for the PV system maximum power point tracking. IEEE Trans. Sustain. Energy 9, 45–55 (2018).  https://doi.org/10.1109/TSTE.2017.2714705CrossRefGoogle Scholar
  17. 17.
    Wang, S.-H., Phillips, P., Dong, Z.-C., Zhang, Y.-D.: Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm. Neurocomputing 272, 668–676 (2018).  https://doi.org/10.1016/j.neucom.2017.08.015CrossRefGoogle Scholar
  18. 18.
    Kumar, V., Yadav, S.M.: Optimization of reservoir operation with a new approach in evolutionary computation using TLBO algorithm and Jaya algorithm. Water Resour. Manag. 32, 4375–4391 (2018).  https://doi.org/10.1007/s11269-018-2067-5CrossRefGoogle Scholar
  19. 19.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, pp. 39–43 (1995)Google Scholar
  20. 20.
    Baltar, A.M., Fontane, D.G.: Use of multiobjective particle swarm optimization in water resources management. J Water Resour. Plan Manag. 134, 257–265 (2008).  https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(257)CrossRefGoogle Scholar
  21. 21.
    Storn, R., Price, K.: Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proceedings of IEEE International Conference on Evolutionary Computation. IEEE, pp. 842–844 (1996)Google Scholar
  22. 22.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob. Optim. 11, 341–359 (1997).  https://doi.org/10.1023/A:1008202821328MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2009).  https://doi.org/10.1109/TEVC.2008.927706CrossRefGoogle Scholar
  24. 24.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Des. 43, 303–315 (2011).  https://doi.org/10.1016/j.cad.2010.12.015CrossRefGoogle Scholar
  25. 25.
    Subramanya, K.: Engineering hydrology. Tata McGraw-Hill Educ, pp. 45–60 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Civil Engineering DepartmentSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations