A Decennary Survey on Artificial Intelligence Methods for Image Segmentation

  • B. Vinoth KumarEmail author
  • S. Sabareeswaran
  • G. Madumitha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)


The technique of breaking down an image into categorial regions containing each pixel with similar attributes is termed as image segmentation (IS). It is the preliminary step of image processing. This technique can be used for both grey-scale and colour images. This technique is applied everywhere, even in our personal Smartphone’s camera while capturing pictures. And image segmentation is the most innovative problem under the computer vision domain. This paper provides various techniques that are available in the field of image segmentation and their pros and cons. A lot of research is being done by applying artificial intelligence techniques for the image segmentation problems. In this paper, an overview of artificial intelligence algorithm techniques such as machine learning, deep learning, meta-heuristics approaches that was used in the past decade has been discussed, and a comparative study about the same is carried out and the problems and recommendations for selection of appropriate method for image segmentation have been dealt with.


Artificial intelligence Machine learning Deep learning Meta-heuristic techniques Computer vision and image segmentation 


  1. 1.
  2. 2.
    Liao, W., Rohr, K., Kang, C.-K., Cho, Z.-H., Stefan, W.: Automatic human brain vessel segmentation from 3D 7 tesla MRA images using fast marching with anisotropic directional prior (2012).
  3. 3.
    Kumar, V.B., Janani, K., Priya, M.N.: A survey on automatic detection of hard exudates in diabetic retinopathy (2017).
  4. 4.
    Kumar, V.B., Divya, S.: A study on optic disc localization methods in retinal images (In press)Google Scholar
  5. 5.
    Cheng, Y.: Mean shift, mode seeking, and clustering (1995). Scholar
  6. 6.
    Liu, G., Zhang, Y., Wang, A.: Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans. Image Process. 24(11), 3990–4000 (2015). Scholar
  7. 7.
    Raju, D.R.P., Neelima, G.: Image segmentation by using histogram thresholding (2012). doi: ijcset2012020103Google Scholar
  8. 8.
    Mushrif, M.M., Ray, A.K.: A-IFS Histon based multithresholding algorithm for color image segmentation. IEEE Signal Process. Lett. 16(3), 168–171 (2009). Scholar
  9. 9.
    Pizer, S.M., Amburn, P.E., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B.H., Zimmerman, J.B., Zuiderveld.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987). Scholar
  10. 10.
    Kuan, Y.-H., Kuo, C.-M., Yang, N.-C.: Color-based image salient region segmentation using novel region merging strategy. IEEE Trans. Multimedia 10(5), 832–845 (2008). Scholar
  11. 11.
    Preetha, M.M.S.J., Suresh, P.L., Bosco, J.M.: Image segmentation using seeded region growing. In: 2012 International Conference on Computing, Electronics and Electrical Technologies (2012).
  12. 12.
    Huang, Q., Dam, B., Steele, D., Ashley, J., Niblack, W.: Foreground/background segmentation of color images by integration of multiple cues. In: IEEE International Conference on Image Processing, pp. 246–249 (1995).
  13. 13.
    Haddon, J.F., Boyce, J.F.: Image segmentation by unifying region and boundary information. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 929–948 (1990). Scholar
  14. 14.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). Scholar
  15. 15.
    Mignotte, M.: A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation. IEEE Trans. Image Process. 19(6), 1610–1624 (2010). Scholar
  16. 16.
    Liu, G., Lin, Z., Yu, Y., Tang, X.: Unsupervised object segmentation with a hybrid graph model (HGM). IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 910–924 (2010). Scholar
  17. 17.
    Techopedia-artificial intelligence. http://www.techopedia/artificialintelligence
  18. 18.
    Techopedia-machine learning. http://www.techopedia/machinelearning
  19. 19.
    Kim, K., Oh, C., Sohn, K.: Non-parametric human segmentation using support vector machine. In: 2016 IEEE International Conference on Consumer Electronics (ICCE) (2016).
  20. 20.
    Barinova, O., Shapovalov, R., Sudakov, S., Velizhev, A.: Online random forest for interactive image segmentation (2012)Google Scholar
  21. 21.
    Hemjot, Sharma, A.: A refinement: better classification of images using LDA in contrast with SURF and SVM for CBIR system. Int. J. Comput. Appl. 117(16), 31–33 (2015). Scholar
  22. 22.
    Mignotte, M.: Segmentation by fusion of histogram-based K-means clusters in different color spaces. IEEE Trans. Image Process. 17(5), 780–787 (2008). Scholar
  23. 23.
    Kumar, V.B., Karpagam, G.R., Rekha, V.N.: Performance analysis of deterministic centroid initialization method for partitional algorithms in image block clustering. Indian J. Sci. Technol. 8(S7), 63 (2015). Scholar
  24. 24.
    Lee, S.H., Koo, H.I., Cho, N.I.: An unsupervised image segmentation algorithm based on the machine learning of appropriate features. In: 16th IEEE International Conference on Image Processing (ICIP). IEEE, Korea (2009).
  25. 25.
    Yang, Y., Wang, Y.: Simulated Annealing Spectral Clustering algorithm for image segmentation. J. Syst. Eng. Electron. 25(3), 514–522 (2014). Scholar
  26. 26.
    Costin, H.: Elastic contour-based image segmentation using genetic algorithms. In: 2011 E-Health and Bioengineering Conference (EHB) (2011)Google Scholar
  27. 27.
    Kumar, V.B., Karpagam, G.R.: Evolutionary algorithm with memetic search for optic disc localization in retinal fundus images (In press)Google Scholar
  28. 28.
    Parihar, A.S.: Satellite image segmentation based on differential evolution. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS) (2017).
  29. 29.
    Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. In: Advanced Applications in Pattern Recognition book series (AAPR), pp. 43–93 (1981). Scholar
  30. 30.
    Alva, A., Akash, R.S., Manikantan, K.: Optimal multilevel thresholding based on Tsallis entropy and half-life constant PSO for improved image segmentation. In: IEEE UP Section Conference on Electrical Computer and Electronics (2015).
  31. 31.
    Mirghasemi, S., Andreae, P., Zhang, M., Rayudu, R.: Severely noisy image segmentation via wavelet shrinkage using PSO and fuzzy C-means. In: IEEE Symposium Series on Computational Intelligence (2016).
  32. 32.
    Na, L., Yan, J., Shu, L.: Application of PSO algorithm with dynamic inertia weight in medical image thresholding segmentation. In: IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom) (2017).
  33. 33.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36(1), 91–123 (1988). Scholar
  34. 34.
    Cristhian, A.C., Sanchez, R., Baradit, E.: Detection of knots using X-ray tomographies and deformable contours with simulated annealing. Wood Res., 57–66 (2008)Google Scholar
  35. 35.
    Cristhian, A.C., Mario, A., Angel, D.: Simulated Annealing—A Novel Application of Image Processing in the Wood Area (2012). Scholar
  36. 36.
    Hussain, A.R.: Optic nerve head segmentation using Genetic Active Contours. In: International Conference on Computer and Communication Engineering, pp. 783–787 (2008).
  37. 37.
    Sierra, C.V, Novo, J., Santos, J., Penedo, M.G.: Frontiers in artificial intelligence and applications. In: Advances in Knowledge-Based and Intelligent Information and Engineering Systems, vol. 243, pp. 1380–1389 (2012)Google Scholar
  38. 38.
    Sierra, C.V, Novo, J., Santos, J., Penedo, M.G.: Emergent segmentation of topological active nets by means of evolutionary obtained artificial neural networks. In: Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART), vol. 2, pp. 44–50 (2013).
  39. 39.
    Mesejo, P., Valsecchi, A., Marrakchi-Kacem, L., Cagnoni, S., Damas, S.: Biomedical image segmentation using geometric deformable models and metaheuristics. Comput. Med. Imaging Graph. 43, 167–178 (2015). Scholar
  40. 40.
    Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). Scholar
  41. 41.
    Hamid, O.A., Mohamed, A.R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2015). Scholar
  42. 42.
    Lecun, Y., Bottou, L., Bengio, Y., Haffner.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). Scholar
  43. 43.
    Bardou, D., Zhang, K., Ahmed, S.M.: Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018). Scholar
  44. 44.
    Yuan, Y.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, USA (2017). Scholar
  45. 45.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2015).
  46. 46.
    Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2014).
  47. 47.
    Zitnick, C.L, Dollar, P.: Edge boxes: locating object proposals from edges. In: European Conference on Computer Vision (2014). Scholar
  48. 48.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, USA (2014).
  49. 49.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015). Scholar
  50. 50.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Lecture Notes in Computer Science, pp. 21–37 (2016). Scholar
  51. 51.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).
  52. 52.
    Luo, S., Hu, Q., He, X., Li, J., Jin, J.S., Park, M.: Automatic liver parenchyma segmentation from abdominal CT images using support vector machines. In: ICME International Conference on Complex Medical Engineering (2009).
  53. 53.
    Wang, S., Fu, D., Xu, M., Hu, D.: Advanced fuzzy cellular neural network: application to CT liver images. Artif. Intell. Med. 39(1), 65–77 (2007). Scholar
  54. 54.
    Teixeira, G.M., Pommeranzembaum, I.R., Oliveira, B.L.D., Lobosco, M., Santos, R.W.D.: Automatic segmentation of cardiac MRI using snakes and genetic algorithms. In: Bubak, M., Dongarra, J., VanAlbada, G.D., Sloot, P.M.A. (eds.), Computational Science, vol. 5103, pp. 168–177 (2008). Scholar
  55. 55.
    Hsu, C.-Y., Liu, C.-Y., Chen, C.-M.: Automatic segmentation of liver PET images, computerized medical imaging and graphics. Comput. Med. Imaging Graph. 32(7), 601–610 (2008). Scholar
  56. 56.
    Shahamatnia, E., EbadzaSSdeh, M.M.: Application of particle swarm optimization and snake model hybrid on medical imaging. In: Proceeding of IEEE Third International Workshop on Computational Intelligence in Medical Imaging (2011).
  57. 57.
    Montiel, O.R.., Aguilar, C.M.A., López, S.C., Velasco, A.F.J., López, M.F.E., Pulido, F.L.: Images segmentation by using differential evolution with constraints handling. In: IEEE Latin American Conference on Computational Intelligence (LA-CCI) (2017).
  58. 58.
    Liu, W., Deng, X., Shi, H.: Research on algorithm of PSO in image segmentation of cement-based. In: 7th International Conference on Cloud Computing and Big Data (CCBD) (2016).
  59. 59.
    Mesejo, P., Ugolotti, R., Cunto, F.D., Giacobini, M., Cagnoni, S.: Automatic hippocampus localization in histological images using differential evolution-based deformable models. Pattern Recogn. Lett. 34(3), 299–307 (2013). Scholar
  60. 60.
    Wang, Y.-Y., Sun, Y.-N., Lin, C.-C.K., Ju, M.-S.: Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems. Artif. Intell. Med. 54(3), 189–200 (2012). Scholar
  61. 61.
    Mesejo, P., Ugolotti, R., Cagnoni, S., Cunto, F.D., Giacobini, M.: Automatic segmentation of hippocampus in histological images of mouse brains using deformable models and random forest. In: 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS) (2012).
  62. 62.
    Ugolotti, R., Mesejo, P., Cagnoni, S., Giacobini, M., Cunto, F.D.: Automatic hippocampus localization in histological images using PSO-based deformable models. In: 13th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO), pp. 487–494 (2011).
  63. 63.
    Ugolotti, R., Nashed, Y.S.G., Mesejo, P., Ivekovic, S., Mussi, L., Cagnoni, S.: Particle swarm optimization and differential evolution for model-based object detection. Appl. Soft Comput. 13(6), 3092–3105 (2013). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • B. Vinoth Kumar
    • 1
    Email author
  • S. Sabareeswaran
    • 1
  • G. Madumitha
    • 1
  1. 1.Department of Information TechnologyPSG College of TechnologyCoimbatoreIndia

Personalised recommendations