Advertisement

Jaya: A New Meta-heuristic Algorithm for the Optimization of Braced Dome Structures

  • Tayfun DedeEmail author
  • Maksym Grzywiński
  • R. Venkata Rao
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)

Abstract

A new algorithm called Jaya is presented for the design of the braced dome structures by taking into account the objective function as least weight with frequency constraints. The size optimization is considered for the 3D truss elements. The performance of Jaya algorithm is presented through benchmark 120-bar braced dome. This study indicated that the proposed technique is a powerful technique for the optimal design of domes with the constrained problem. The developed computer program for the analysis and optimization of the dome structure and the optimization algorithm for Jaya are coded in MATLAB.

Keywords

Jaya algorithm Size optimization Frequency constraints Dome structure 

References

  1. 1.
    Bellagamba, L., Yang, T.: Minimum-mass truss structures with constraints on fundamental natural frequency. AIAA J. 19(11), 1452–1458 (1981).  https://doi.org/10.2514/3.7875CrossRefGoogle Scholar
  2. 2.
    Lin, J.H., Chen, W.Y., Yu, Y.S.: Structural optimization on geometrical and element sizing with static and dynamic constraints. Comput. Struct. 15, 507–515 (1982)CrossRefGoogle Scholar
  3. 3.
    Bekiroglu, S., Dede, T., Ayvaz, Y.: Implementation of different encoding types on structural optimization based on adaptive genetic algorithm. Finite Elem. Anal. Des. 45, 826–835 (2009).  https://doi.org/10.1016/j.finel.2009.06.019CrossRefGoogle Scholar
  4. 4.
    Grzywiński, M.: Optimization of single-layer braced domes. Trans. VSB Tech. Univ. Ostrava 17(1), paper #6 (2017).  https://doi.org/10.1515/tvsb-2017-0006CrossRefGoogle Scholar
  5. 5.
    Salam, S.A., El-shihy, A., Eraky, A., Salah, M.: Optimum design of trussed dome structures. Int. J. Eng. Innov. Technol. 4, 124–130 (2015)Google Scholar
  6. 6.
    Talaslioglu, T.: Design optimization of dome structures by enhanced genetic algorithm with multiple populations. Sci. Res. Essays 7, 3877–3896 (2012)Google Scholar
  7. 7.
    Lingyum, W., Mei, Z., Guangming, W., Guang, M.: Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. Comput. Mech. 35, 361–368 (2005).  https://doi.org/10.1007/s00466-004-0623-8CrossRefzbMATHGoogle Scholar
  8. 8.
    Miguel, L.F.F., Miguel, L.F.F.: Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst. Appl. 39, 9458–9467 (2012).  https://doi.org/10.1016/j.eswa.2012.02.113CrossRefGoogle Scholar
  9. 9.
    Gomes, H.M.: Truss optimization with dynamic constraints using a particle swam algorithm. Expert Syst. Appl. 38, 957–968 (2011).  https://doi.org/10.1016/j.eswa.2010.07.086CrossRefGoogle Scholar
  10. 10.
    Kaveh, A., Zolghadr, A.: Democratic PSO for truss layout and size optimization with frequency constraints. Comput. Struct. 130(3), 10–21 (2014).  https://doi.org/10.1016/j.compstruc.2013.09.002CrossRefGoogle Scholar
  11. 11.
    Kaveh, A., Zolghadr, A.: A new PSRO algorithm for frequency constraint truss shape and size optimization. Struct. Eng. Mech. 52(3), 445–468 (2014).  https://doi.org/10.12989/sem.2014.52.3.445CrossRefGoogle Scholar
  12. 12.
    Kaveh, A., Javadi, S.M.: Shape and size optimization of trusses with multiple frequency constraints using harmony search and ray optimizer for enhancing the particle swarm optimization algorithm. Acta Mech. 225, 1595–1605 (2014).  https://doi.org/10.1007/s00707-013-1006-zCrossRefGoogle Scholar
  13. 13.
    Kaveh, A., Mahdavi, V.R.: Colling-bodies optimization for truss with multiple frequency constraints. J. Comput. Civ. Eng. 29(5), 04014078-10 (2015).  https://doi.org/10.1061/(asce)cp.1943-5487.0000402CrossRefGoogle Scholar
  14. 14.
    Tejani, G.G., Savsani, V.J., Patel, V.K.: Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J. Comput. Des. Eng. 3, 226–249 (2016).  https://doi.org/10.1016/j.jcde.2016.02.003CrossRefGoogle Scholar
  15. 15.
    Kaveh, A., Ghazaan, M.I.: Optimal design of dome truss structures with dynamic frequency constraints. Struct. Multidisc. Optim. 53, 605–621 (2016).  https://doi.org/10.1007/s00158-015-1357-2MathSciNetCrossRefGoogle Scholar
  16. 16.
    Baghlani, A., Makiabadi, M.H.: Teaching-learning-based optimization algorithm for shape and size optimization of truss structures with dynamic frequency constraints. Iran J. Sci. Technol. 37, 409–421 (2013).  https://doi.org/10.22099/IJSTC.2013.1796CrossRefGoogle Scholar
  17. 17.
    Dede, T., Toğan, V.: A teaching learning based optimization for truss structures with frequency constraints. Struct. Eng. Mech. 53, 833–845 (2015).  https://doi.org/10.12989/sem.2015.53.4.833CrossRefGoogle Scholar
  18. 18.
    Farshchin, M., Camp, C.V., Maniat, M.: Multi-class teaching-learning-based optimization for truss design with frequency constraints. Eng. Struct. 106, 356–369 (2016).  https://doi.org/10.1016/j.engstruct.2015.10.039CrossRefGoogle Scholar
  19. 19.
    Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 19–34 (2016).  https://doi.org/10.5267/j.ijiec.2015.8.004CrossRefGoogle Scholar
  20. 20.
    Rao, R.V.: Jaya: An Advanced Optimization Algorithm and Its Engineering Applications. Springer, Berlin (2019)Google Scholar
  21. 21.
    Dede, T.: Jaya algorithm to solve single objective size optimization problem for steel grillage structures. Steel Compos. Struct. 26, 163–170 (2018).  https://doi.org/10.12989/scs.2018.26.2.163CrossRefGoogle Scholar
  22. 22.
    Degertekin, S.O., Lamberti, L., Ugur, I.B.: Sizing, layout and topology design optimization of truss structures using the Jaya algorithm. Appl. Soft Comput. 70, 903–928 (2018).  https://doi.org/10.1016/j.asoc.2017.10.001CrossRefGoogle Scholar
  23. 23.
    Özdemir, Y.I., Ayvaz, Y.: Earthquake behavior of stiffened RC frame structures with/without subsoil. Struct. Eng. Mech. 28(5), 571–585 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Civil EngineeringKaradeniz Technical UniversityTrabzonTürkiye
  2. 2.Faculty of Civil EngineeringCzestochowa University of TechnologyCzestochowaPoland
  3. 3.Department of Mechanical EngineeringSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations