The Use of Grey Relational Analysis to Determine Optimum Parameters for Plasma Arc Cutting of SS-316L

  • K. S. PatelEmail author
  • A. B. Pandey
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)


Use of plasma arc cutting requires careful selection of parameters to control kerf and material properties. Use of multi-objective optimization technique like grey relational analysis (GRA) to optimize parameters in plasma arc cutting of SS-316L plate using five performance characteristics is discussed. The multi-objective optimization problem arises due to mutually conflicting nature of the responses in cutting. Experiments were conducted using L9 orthogonal array (OA), and generated data was used to apply GRA giving a current of 40 A, a pressure of 6 bar, a stand-off distance of 2 mm and a speed of 0.3044 m/min as the best parameters for plasma arc cutting of SS-316L 6 mm thick plate.


Plasma arc cutting Grey relation analysis Optimization 


  1. 1.
    Taguchi, G.: Introduction to Quality Engineering. Asian Productivity Organization, Tokyo (1990)Google Scholar
  2. 2.
    Ross, P.J.: Taguchi Techniques for Quality Engineering. McGraw-Hill, New York (1988)Google Scholar
  3. 3.
    Phadke, M.S., Dehnad, K.: Optimization of product and process design for quality and cost. Qual. Reliability Eng. Int. 4(2), 105–112 (1988)CrossRefGoogle Scholar
  4. 4.
    Mathiselvan, G., Sundaravel, S., Sindiri Chaitanya, Kaja Bantha Navas, R.: Application of taguchi method for optimization of process parameters in analyzing the cutting forces of lathe turning operation. Int. J. Pure Appl. Math. 109(8), 129–136 (2016)Google Scholar
  5. 5.
    Arun, K.K., Ponnuswamy, D.: Optimization of dry end milling process parameters of Al-6063 alloy using Taguchi method. Int. J. Trend Sci. Res. Dev. 2(3), 2058–2062 (2018)Google Scholar
  6. 6.
    Dubey, A.K., Yadava, V.: Multi-objective optimisation of laser beam cutting process. Opt. Laser Technol. 40, 562–570 (2008)CrossRefGoogle Scholar
  7. 7.
    Sharma, P., Verma, A., Sidhu, R.K., Pandey, O.P.: Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. J. Mater. Process. Technol. 178, 147–151 (2005)CrossRefGoogle Scholar
  8. 8.
    Yi, Q., Li, C., Tang, Y., Chen, X.: Multi-objective parameter optimization of CNC machining for low carbon manufacturing. J. Clean. Prod. 95(15), 256–264 (2015)CrossRefGoogle Scholar
  9. 9.
    Ghani, J.A., Choudhury, I.A., Hassan, H.H.: Application of Taguchi method in the optimization of end milling parameters. J. Mater. Process. Technol. 145, 84–92 (2004)CrossRefGoogle Scholar
  10. 10.
    Tarng, Y.S., Juang, S.C., Chang, C.H.: The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hard facing. J. Mater. Process. Technol. 128, 1–6 (2002)CrossRefGoogle Scholar
  11. 11.
    Deng, J.L.: Introduction to grey system. J. Grey Syst. 1, 1–24 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Deng, J.L.: Control problems of grey systems. Syst. Control Lett. 5, 288–294 (1982)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Tsai, M.-J., Li, C.-H.: The use of grey relational analysis to determine laser cutting parameters for QFN packages with multiple performance characteristics. Elsevier J. Opt. Laser Technol. 41, 914–921 (2009)CrossRefGoogle Scholar
  14. 14.
    Das, M.K., Kumar, K., Barman, T.K., Sahoo, P.: Optimization of process parameters in plasma Arc cutting of EN 31 steel based on MRR and multiple roughness characteristics using grey relational analysis. Elsevier J. Procedia Mater. Sci. 5, 1550–1555 (2014)CrossRefGoogle Scholar
  15. 15.
    Pandian, P.P., Rout, I.S.: Parametric investigation of machining parameters in determining the machinability of Inconel 718 using taguchi technique and grey relational analysis. Procedia Comput. Sci. 133, 786–792 (2018)CrossRefGoogle Scholar
  16. 16.
    Kumar, S.S., Uthayakumar, M., Kumaran, S.T.: Parametric optimization of wire electrical discharge machining on aluminium based composites through grey relational analysis. J. Manuf. Proc. 20(Part 1), 33–39 (2015)Google Scholar
  17. 17.
    Lin, J.L., Lin, C.L.: The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int. J. Mach. Tools Manuf 42, 237–244 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations