Advertisement

Modeling 3D WSN to Maximize Coverage Using Harmony Search Scheme

  • Deepika SharmaEmail author
  • Vrinda Gupta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 949)

Abstract

This paper develops a 3D WSN (three-dimensional wireless sensor network) to solve point coverage problem at minimum cost. Coverage in WSN is crucial as it measures the quality of monitoring. This requires finding of optimal number of sensors (cost of the network) at optimal locations to cover the given 3D space. Here, Harmony search scheme has been employed for maximizing coverage and reducing the network cost. The Network coverage ratio, the minimum distance between two sensors and the number of sensors are the parameters that have been incorporated in the objective function. Simulation results have proved the capability of proposed scheme by providing maximum network coverage by placing lesser number of sensor nodes at optimal locations. In addition, incorporation of minimum distance parameter in objective function has reduced overlapping of sensor nodes and reduced the cost of the network by 25%. Furthermore, scalability of the proposed scheme has also been investigated. Also, significant performance enhancement has been observed in terms of network lifetime when the performance of proposed scheme is compared with random-based deployment scheme using Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol.

Keywords

3D wireless sensor network Harmony search algorithm Coverage ratio Network cost and node placement 

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002).  https://doi.org/10.1109/MCOM.2002.1024422CrossRefGoogle Scholar
  2. 2.
    Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., Hanzo, L.: A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms, and open problems. IEEE Commun. Surv. Tutor. 19(1), 550–586 (2017).  https://doi.org/10.1109/COMST.2016.2610578CrossRefGoogle Scholar
  3. 3.
    Commuri, S., Watfa, M.K.: Coverage strategies in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2(4), 333–353 (2006).  https://doi.org/10.1080/15501320600719151CrossRefGoogle Scholar
  4. 4.
    Iovanovici, A., Topirceanu, A., Udrescu, M., Vladutiu, M.: Design space exploration for optimizing wireless sensor networks using social network analysis. In: 18th International Conference on System Theory, Control and Computing (ICSTCC), pp. 815–820. IEEE Press (2014)Google Scholar
  5. 5.
    Chien, S., Tran, D., Doubleday, J., Davies, A., Kedar, S., Webb, F., Shirazi, B.: A multi-agent space, in-situ Volcano Sensor Web. In: International Symposium on Space Artificial Intelligence, Robotics, and Automation for Space, Sapporo, Japan (2010)Google Scholar
  6. 6.
    Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3(3), 257–279 (2005).  https://doi.org/10.1016/j.adhoc.2005.01.004CrossRefGoogle Scholar
  7. 7.
    Lian, X.Y., Zhang, J., Chen, C., Deng, F.: Three-dimensional deployment optimization of sensor network based on an improved Particle Swarm Optimization algorithm. In: 10th World Congress on Intelligent Control and Automation (WCICA), pp. 4395–4400. IEEE Press (2012)Google Scholar
  8. 8.
    Zhang, C., Bai, X., Teng, J., Xuan, D., Jia, W.: Constructing low-connectivity and full-coverage three-dimensional sensor networks. IEEE J. Sel. Areas Commun. 28(7), 984–993 (2010).  https://doi.org/10.1109/JSAC.2010.100903CrossRefGoogle Scholar
  9. 9.
    Cao, B., Kang, X., Zhao, J., Yang, P., Lv, Z., Liu, X.: Differential evolution-based 3D directional wireless sensor network deployment optimization. IEEE Internet Things J. 5(5), 3594–3605 (2018).  https://doi.org/10.1109/JIOT.2018.2801623CrossRefGoogle Scholar
  10. 10.
    Alia, O.M., Al-Ajouri, A.: Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sens. J. 17(3), 882–896 (2017).  https://doi.org/10.1109/JSEN.2016.2633409CrossRefGoogle Scholar
  11. 11.
    Sharma, D., Gupta, V.: Improving coverage and connectivity using harmony search algorithm in wireless sensor network. In: Emerging Trends in Computing and Communication Technologies (ICETCCT), pp. 1–7, IEEE (2017).  https://doi.org/10.1109/icetcct.2017.8280297
  12. 12.
    Temel, S., Unaldi, N., Kaynak, O.: On deployment of wireless sensors on 3-D terrains to maximize sensing coverage by utilizing cat swarm optimization with wavelet transform. IEEE Trans. Syst. Man Cybern.: Syst. 44(1), 111–120 (2014).  https://doi.org/10.1109/TSMCC.2013.2258336CrossRefGoogle Scholar
  13. 13.
    Zong, W.G., Joong, H.K., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001).  https://doi.org/10.1177/003754970107600201CrossRefGoogle Scholar
  14. 14.
    Yang, X.S.: Harmony search as a metaheuristic algorithm. In: Music-Inspired Harmony Search Algorithm, pp. 1–14. Springer, Berlin (2009)Google Scholar
  15. 15.
    Sangwan, A., Singh, R.P.: Survey on coverage problems in wireless sensor networks. Wireless Pers. Commun. 80(4), 1475–1500 (2015).  https://doi.org/10.1007/s11277-014-2094-3CrossRefGoogle Scholar
  16. 16.
    Deif, D.S., Gadallah, Y.: Classification of wireless sensor networks deployment techniques. IEEE Commun. Surv. Tutor. 16(2), 834–855 (2014).  https://doi.org/10.1109/SURV.2013.091213.00018CrossRefGoogle Scholar
  17. 17.
    Abidin, H.Z., Din, N.M., Yassin, I.M., Omar, H.A., Radzi, N.A.M., Sadon, S.K.: Sensor node placement in wireless sensor network using multi-objective territorial predator scent marking algorithm. Arabian J. Sci. Eng. 39(8), 6317–6325 (2014).  https://doi.org/10.1007/s13369-014-1292-3CrossRefGoogle Scholar
  18. 18.
    Yoon, Y., Kim, Y.H.: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Trans. Syst. Man Cybern. B 43(5), 1473–1483 (2013).  https://doi.org/10.1109/tcyb.2013.2250955CrossRefGoogle Scholar
  19. 19.
    Heinzelman, W. R., Chandrakasan, A., Balakrishnan, H.: Energy efficient communication protocol for wireless sensor networks. In: Proceeding of the 33rd Hawaii International Conference System Sciences, Hawaii (2000).  https://doi.org/10.1109/hicss.2000.926982
  20. 20.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wireless Commun. 1(4), 660–670 (2002).  https://doi.org/10.1109/TWC.2002.804190CrossRefGoogle Scholar
  21. 21.
    Gill, R.K., Chawla, P., Sachdeva, M.: Study of LEACH routing protocol for wireless sensor networks. In: International Conference on Communication, Computing & Systems (ICCCS-2014) (2014)Google Scholar
  22. 22.
    Kohli, S., Bhattacharya, P., Jha, M.K.: Implementation of homogeneous LEACH Protocol in three-dimensional wireless sensor networks. Int. J. Sens. Wirel. Commun. Control 6(1), 4–11 (2016).  https://doi.org/10.2174/2210327905666150903214939CrossRefGoogle Scholar
  23. 23.
    Zhang, H.C., Hou, J.: Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc Sens. Wirel. Netw. 1, 89–124 (2005).  https://doi.org/10.1201/9780203323687CrossRefGoogle Scholar
  24. 24.
    Guangjie, H., Chenyu, Z., Lei, S., Joel, J.P., Rodrigues, C.: Impact of deployment strategies on localization performance in underwater acoustic sensor networks. IEEE Trans. Ind. Electron. 62(3), 1725–1733 (2015).  https://doi.org/10.1109/tie.2014.2362731CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology, KurukshetraKurukshetraIndia

Personalised recommendations