Skip to main content

Pharmacogenomics

  • Chapter
  • First Online:
Genome-Wide Association Studies
  • 966 Accesses

Abstract

Pharmacogenomics is the field of study to discover the genetic factors which affect the response to drugs. The final goal of the pharmacogenomics is to identify clinically useful biomarkers for the drug efficacy or toxicity and to provide the most appropriate drugs to each individual based on the results of genetic test. Genome-wide association study (GWAS) has considered to be a powerful tool to identify novel genetic variations related to disease susceptibility as well as drug efficacy and toxicity. The results of GWAS could clarify the cause of the diseases or interindividual differences of drug response. The validation studies or meta-analysis for the results of GWASs are essential for clinical application of biomarkers identified in the GWASs. This chapter highlights the notable results of pharmacogenomic GWASs which have been published until today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramirez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    Article  CAS  PubMed  Google Scholar 

  2. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91:2001–2008

    Article  CAS  PubMed  Google Scholar 

  3. McBride KL, Gilchrist GS, Smithson WA, Weinshilboum RM, Szumlanski CL (2000) Severe 6-thioguanine-induced marrow aplasia in a child with acute lymphoblastic leukemia and inherited thiopurine methyltransferase deficiency. J Pediatr Hematol Oncol 22:441–445

    Article  CAS  PubMed  Google Scholar 

  4. Gozalo C, Gerard L, Loiseau P, Morand-Joubert L, Peytavin G, Molina JM, Dellamonica P, Becquemont L, Aboulker JP, Launay O, Verstuyft C (2011) Pharmacogenetics of toxicity, plasma trough concentration and treatment outcome with nevirapine-containing regimen in anti-retroviral-naive HIV-infected adults: an exploratory study of the TRIANON ANRS 081 trial. Basic Clin Pharmacol Toxicol 109:513–520

    Article  CAS  PubMed  Google Scholar 

  5. de Boer YS, Kosinski AS, Urban TJ, Zhao Z, Long N, Chalasani N, Kleiner DE, Hoofnagle JH (2017) Features of autoimmune hepatitis in patients with drug-induced liver injury. Clin Gastroenterol Hepatol 15:103–112 e102

    Article  PubMed  Google Scholar 

  6. Low SK, Takahashi A, Mushiroda T, Kubo M (2014) Genome-wide association study: a useful tool to identify common genetic variants associated with drug toxicity and efficacy in cancer pharmacogenomics. Clin Cancer Res 20:2541–2552

    Article  CAS  PubMed  Google Scholar 

  7. Chambliss AB, Chan DW (2016) Precision medicine: from pharmacogenomics to pharmacoproteomics. Clin Proteomics 13:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferner RE, Aronson JK (2006) Clarification of terminology in medication errors: definitions and classification. Drug Saf 29:1011–1022

    Article  PubMed  Google Scholar 

  9. Aronson JK, Ferner RE (2005) Clarification of terminology in drug safety. Drug Saf 28:851–870

    Article  PubMed  Google Scholar 

  10. Iasella CJ, Johnson HJ, Dunn MA (2017) Adverse drug reactions: Type A (Intrinsic) or Type B (Idiosyncratic). Clin Liver Dis 21:73–87

    Article  PubMed  Google Scholar 

  11. Nelson MR, Bacanu SA, Mosteller M, Li L, Bowman CE, Roses AD, Lai EH, Ehm MG (2009) Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J 9:23–33

    Article  CAS  PubMed  Google Scholar 

  12. Chan SL, Jin S, Loh M, Brunham LR (2015) Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity. Pharmacogenomics 16:1161–1178

    Article  CAS  PubMed  Google Scholar 

  13. Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C, Watson D, Eclov RJ, Mefford J, McLeod HL, Friedman PN, Hudis CA, Winer EP, Jorgenson EM, Witte JS, Shulman LN, Nakamura Y, Ratain MJ, Kroetz DL (2012) A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res 18:5099–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiyotani K, Uno S, Mushiroda T, Takahashi A, Kubo M, Mitsuhata N, Ina S, Kihara C, Kimura Y, Yamaue H, Hirata K, Nakamura Y, Zembutsu H (2012) A genome-wide association study identifies four genetic markers for hematological toxicities in cancer patients receiving gemcitabine therapy. Pharmacogenet Genomics 22:229–235

    Article  CAS  PubMed  Google Scholar 

  15. Srinivasan Y, Sasa M, Honda J, Takahashi A, Uno S, Kamatani N, Kubo M, Nakamura Y, Zembutsu H (2011) Genome-wide association study of epirubicin-induced leukopenia in Japanese patients. Pharmacogenet Genomics 21:552–558

    Article  CAS  PubMed  Google Scholar 

  16. Chung S, Low SK, Zembutsu H, Takahashi A, Kubo M, Sasa M, Nakamura Y (2013) A genome-wide association study of chemotherapy-induced alopecia in breast cancer patients. Breast Cancer Res 15:R81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chantarangsu S, Mushiroda T, Mahasirimongkol S, Kiertiburanakul S, Sungkanuparph S, Manosuthi W, Tantisiriwat W, Charoenyingwattana A, Sura T, Takahashi A, Kubo M, Kamatani N, Chantratita W, Nakamura Y (2011) Genome-wide association study identifies variations in 6p21.3 associated with nevirapine-induced rash. Clin Infect Dis 53:341–348

    Article  CAS  PubMed  Google Scholar 

  18. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, Ikezawa Z, Iijima M, Shiohara T, Hashimoto K, Kamatani N, Nakamura Y (2011) Genome-wide association study identifies HLA-A∗3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 20:1034–1041

    Article  CAS  PubMed  Google Scholar 

  19. Petros Z, Lee MM, Takahashi A, Zhang Y, Yimer G, Habtewold A, Amogne W, Aderaye G, Schuppe-Koistinen I, Mushiroda T, Makonnen E, Kubo M, Aklillu E (2016) Genome-wide association and replication study of anti-tuberculosis drugs-induced liver toxicity. BMC Genomics 17:755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Travis LB, Fossa SD, Sesso HD, Frisina RD, Herrmann DN, Beard CJ, Feldman DR, Pagliaro LC, Miller RC, Vaughn DJ, Einhorn LH, Cox NJ, Dolan ME (2014) Chemotherapy-induced peripheral neurotoxicity and ototoxicity: new paradigms for translational genomics. J Natl Cancer Inst 106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mykletun A, Dahl AA, Haaland CF, Bremnes R, Dahl O, Klepp O, Wist E, Fossa SD (2005) Side effects and cancer-related stress determine quality of life in long-term survivors of testicular cancer. J Clin Oncol 23:3061–3068

    Article  PubMed  Google Scholar 

  22. Argyriou AA, Bruna J, Marmiroli P, Cavaletti G (2012) Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 82:51–77

    Article  PubMed  Google Scholar 

  23. Saini VK, Sewal RK, Ahmad Y, Medhi B (2015) Prospective observational study of adverse drug reactions of anticancer drugs used in cancer treatment in a tertiary care hospital. Indian J Pharm Sci 77:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hesketh PJ, Batchelor D, Golant M, Lyman GH, Rhodes N, Yardley D (2004) Chemotherapy-induced alopecia: psychosocial impact and therapeutic approaches. Support Care Cancer 12:543–549

    PubMed  Google Scholar 

  25. Brosh R, Sarig R, Natan EB, Molchadsky A, Madar S, Bornstein C, Buganim Y, Shapira T, Goldfinger N, Paus R, Rotter V (2010) p53-dependent transcriptional regulation of EDA2R and its involvement in chemotherapy-induced hair loss. FEBS Lett 584:2473–2477

    Article  CAS  PubMed  Google Scholar 

  26. Muller-Rover S, Rossiter H, Paus R, Handjiski B, Peters EM, Murphy JE, Mecklenburg L, Kupper TS (2000) Overexpression of Bcl-2 protects from ultraviolet B-induced apoptosis but promotes hair follicle regression and chemotherapy-induced alopecia. Am J Pathol 156:1395–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M (2012) Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 31:3730–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang H, Zhang Q, He J, Lu W (2010) Regulation of calcium signaling in lung cancer. J Thorac Dis 2:52–56

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Price VH (1999) Treatment of hair loss. N Engl J Med 341:964–973

    Article  CAS  PubMed  Google Scholar 

  30. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1∗28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2:43–47

    Article  CAS  PubMed  Google Scholar 

  31. Han JY, Shin ES, Lee YS, Ghang HY, Kim SY, Hwang JA, Kim JY, Lee JS (2013) A genome-wide association study for irinotecan-related severe toxicities in patients with advanced non-small-cell lung cancer. Pharmacogenomics J 13:417–422

    Article  CAS  PubMed  Google Scholar 

  32. Low SK, Chung S, Takahashi A, Zembutsu H, Mushiroda T, Kubo M, Nakamura Y (2013) Genome-wide association study of chemotherapeutic agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci 104:1074–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cortes-Funes H, Martin C, Abratt R, Lund B (1997) Safety profile of gemcitabine, a novel anticancer agent, in non-small cell lung cancer. Anti-Cancer Drugs 8:582–587

    Article  CAS  PubMed  Google Scholar 

  34. Heinemann V, Wilke H, Mergenthaler HG, Clemens M, Konig H, Illiger HJ, Arning M, Schalhorn A, Possinger K, Fink U (2000) Gemcitabine and cisplatin in the treatment of advanced or metastatic pancreatic cancer. Ann Oncol 11:1399–1403

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka T, Ikeda M, Okusaka T, Ueno H, Morizane C, Hagihara A, Iwasa S, Kojima Y (2008) Prognostic factors in japanese patients with advanced pancreatic cancer treated with single-agent gemcitabine as first-line therapy. Jpn J Clin Oncol 38:755–761

    Article  PubMed  Google Scholar 

  36. Lee JO, Kim DY, Lim JH, Seo MD, Yi HG, Oh DY, Im SA, Kim TY, Bang YJ (2009) Palliative chemotherapy for patients with recurrent hepatocellular carcinoma after liver transplantation. J Gastroenterol Hepatol 24:800–805

    Article  CAS  PubMed  Google Scholar 

  37. Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, Maekawa K, Saito Y, Ozawa S, Sawada J, Kamatani N, Furuse J, Ishii H, Yoshida T, Ueno H, Okusaka T, Saijo N (2007) Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol 25:32–42

    Article  CAS  PubMed  Google Scholar 

  38. Therasse P, Mauriac L, Welnicka-Jaskiewicz M, Bruning P, Cufer T, Bonnefoi H, Tomiak E, Pritchard KI, Hamilton A, Piccart MJ (2003) Final results of a randomized phase III trial comparing cyclophosphamide, epirubicin, and fluorouracil with a dose-intensified epirubicin and cyclophosphamide + filgrastim as neoadjuvant treatment in locally advanced breast cancer: an EORTC-NCIC-SAKK multicenter study. J Clin Oncol 21:843–850

    Article  CAS  PubMed  Google Scholar 

  39. Case DC Jr, Gams R, Ervin TJ, Boyd MA, Oldham FB (1987) Phase I-II trial of high-dose epirubicin in patients with lymphoma. Cancer Res 47:6393–6396

    PubMed  Google Scholar 

  40. Crawford J, Dale DC, Lyman GH (2004) Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 100:228–237

    Article  PubMed  Google Scholar 

  41. Uetrecht J, Naisbitt DJ (2013) Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev 65:779–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hashimoto K, Yasukawa M, Tohyama M (2003) Human herpesvirus 6 and drug allergy. Curr Opin Allergy Clin Immunol 3:255–260

    Article  CAS  PubMed  Google Scholar 

  43. Shiohara T, Kano Y (2007) A complex interaction between drug allergy and viral infection. Clin Rev Allergy Immunol 33:124–133

    Article  CAS  PubMed  Google Scholar 

  44. Harr T, French LE (2012) Stevens-Johnson syndrome and toxic epidermal necrolysis. Chem Immunol Allergy 97:149–166

    Article  PubMed  Google Scholar 

  45. Pollard RB, Robinson P, Dransfield K (1998) Safety profile of nevirapine, a nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus infection. Clin Ther 20:1071–1092

    Article  CAS  PubMed  Google Scholar 

  46. Carr A, Cooper DA (2000) Adverse effects of antiretroviral therapy. Lancet 356:1423–1430

    Article  CAS  PubMed  Google Scholar 

  47. de Maat MM, ter Heine R, Mulder JW, Meenhorst PL, Mairuhu AT, van Gorp EC, Huitema AD, Beijnen JH (2003) Incidence and risk factors for nevirapine-associated rash. Eur J Clin Pharmacol 59:457–462

    Article  CAS  PubMed  Google Scholar 

  48. Metry DW, Lahart CJ, Farmer KL, Hebert AA (2001) Stevens-Johnson syndrome caused by the antiretroviral drug nevirapine. J Am Acad Dermatol 44:354–357

    Article  CAS  PubMed  Google Scholar 

  49. Marson AG, Williamson PR, Hutton JL, Clough HE, Chadwick DW (2000) Carbamazepine versus valproate monotherapy for epilepsy. Cochrane Database Syst Rev:CD001030

    Google Scholar 

  50. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428:486

    Article  CAS  PubMed  Google Scholar 

  51. Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H, Graf E, Schumacher M, Hovnanian A, Mockenhaupt M, Roujeau JC (2006) A marker for Stevens-Johnson syndrome ...: ethnicity matters. Pharmacogenomics J 6:265–268

    Article  CAS  PubMed  Google Scholar 

  52. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, Ng MH (2007) Association between HLA-B∗1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48:1015–1018

    Article  CAS  PubMed  Google Scholar 

  53. Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, Lohitnavy M, Tassaneeyakul W (2013) Relationship between the HLA-B∗1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol 149:1025–1032

    Article  CAS  PubMed  Google Scholar 

  54. Ocete-Hita E, Salmeron-Fernandez MJ, Urrutia-Maldonado E, de Rueda PM, Salmeron-Ruiz M, Martinez-Padilla MC, Ruiz-Extremera A (2016) Analysis of Immunogenetic factors in idiosyncratic drug-induced liver injury in the paediatric population. J Pediatr Gastroenterol Nutr

    Google Scholar 

  55. Verma S, Kaplowitz N (2009) Diagnosis, management and prevention of drug-induced liver injury. Gut 58:1555–1564

    Article  CAS  PubMed  Google Scholar 

  56. Suk KT, Kim DJ (2012) Drug-induced liver injury: present and future. Clin Mol Hepatol 18:249–257

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mushiroda T, Yanai H, Yoshiyama T, Sasaki Y, Okumura M, Ogata H, Tokunaga K (2016) Development of a prediction system for anti-tuberculosis drug-induced liver injury in Japanese patients. Hum Genome Var 3:16014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nicoletti P, Werk AN, Sawle A, Shen Y, Urban TJ, Coulthard SA, Bjornsson ES, Cascorbi I, Floratos A, Stammschulte T, Gundert-Remy U, Nelson MR, Aithal GP, Daly AK (2016) HLA-DRB1∗16: 01-DQB1∗05: 02 is a novel genetic risk factor for flupirtine-induced liver injury. Pharmacogenet Genomics 26:218–224

    Article  CAS  PubMed  Google Scholar 

  59. Chen R, Zhang Y, Tang S, Lv X, Wu S, Sun F, Xia Y, Zhan SY (2015) The association between HLA-DQB1 polymorphism and antituberculosis drug-induced liver injury: a case-control study. J Clin Pharm Ther 40:110–115

    Article  CAS  PubMed  Google Scholar 

  60. Stephens C, Lopez-Nevot MA, Ruiz-Cabello F, Ulzurrun E, Soriano G, Romero-Gomez M, Moreno-Casares A, Lucena MI, Andrade RJ (2013) HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One 8:e68111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, Daly MJ, Goldstein DB, John S, Nelson MR, Graham J, Park BK, Dillon JF, Bernal W, Cordell HJ, Pirmohamed M, Aithal GP, Day CP (2009) HLA-B∗5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41:816–819

    Article  CAS  PubMed  Google Scholar 

  62. Nicoletti P, Aithal GP, Bjornsson ES, Andrade RJ, Sawle A, Arrese M, Barnhart HX, Bondon-Guitton E, Hayashi PH, Bessone F, Carvajal A, Cascorbi I, Cirulli ET, Chalasani N, Conforti A, Coulthard SA, Daly MJ, Day CP, Dillon JF, Fontana RJ, Grove JI, Hallberg P, Hernandez N, Ibanez L, Kullak-Ublick GA, Laitinen T, Larrey D, Lucena MI, Maitland-van der Zee AH, Martin JH, Molokhia M, Pirmohamed M, Powell EE, Qin S, Serrano J, Stephens C, Stolz A, Wadelius M, Watkins PB, Floratos A, Shen Y, Nelson MR, Urban TJ, Daly AK (2016) Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-wide Association Study. Gastroenterology 152:1078

    Article  CAS  PubMed  Google Scholar 

  63. Harper AR, Topol EJ (2012) Pharmacogenomics in clinical practice and drug development. Nat Biotechnol 30:1249

    Article  CAS  Google Scholar 

  64. Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, Wang YC, Dowsett M, Ingle J, Peto R (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–784

    Article  CAS  PubMed  Google Scholar 

  65. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, Abraham M, Medeiros Alencar VH, Badran A, Bonfill X, Bradbury J, Clarke M, Collins R, Davis SR, Delmestri A, Forbes JF, Haddad P, Hou MF, Inbar M, Khaled H, Kielanowska J, Kwan WH, Mathew BS, Mittra I, Muller B, Nicolucci A, Peralta O, Pernas F, Petruzelka L, Pienkowski T, Radhika R, Rajan B, Rubach MT, Tort S, Urrutia G, Valentini M, Wang Y, Peto R (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Borgna JL, Rochefort H (1981) Hydroxylated metabolites of tamoxifen are formed in vivo and bound to estrogen receptor in target tissues. J Biol Chem 256:859–868

    CAS  PubMed  Google Scholar 

  67. Lien EA, Solheim E, Lea OA, Lundgren S, Kvinnsland S, Ueland PM (1989) Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res 49:2175–2183

    CAS  PubMed  Google Scholar 

  68. Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV, Desta Z, Flockhart DA, Skaar TC (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85:151–159

    Article  CAS  PubMed  Google Scholar 

  69. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310:1062–1075

    Article  CAS  PubMed  Google Scholar 

  70. Goetz MP, Knox SK, Suman VJ, Rae JM, Safgren SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Weinshilboum RM, Fritcher EG, Nibbe AM, Desta Z, Nguyen A, Flockhart DA, Perez EA, Ingle JN (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101:113–121

    Article  CAS  PubMed  Google Scholar 

  71. Schroth W, Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S, Fritz P, Simon W, Suman VJ, Ames MM, Safgren SL, Kuffel MJ, Ulmer HU, Bolander J, Strick R, Beckmann MW, Koelbl H, Weinshilboum RM, Ingle JN, Eichelbaum M, Schwab M, Brauch H (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM, Simon W, Eichelbaum M, Brauch H (2007) Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25:5187–5193

    Article  CAS  PubMed  Google Scholar 

  73. Ramon y Cajal T, Altes A, Pare L, del Rio E, Alonso C, Barnadas A, Baiget M (2010) Impact of CYP2D6 polymorphisms in tamoxifen adjuvant breast cancer treatment. Breast Cancer Res Treat 119:33–38

    Article  CAS  PubMed  Google Scholar 

  74. Kiyotani K, Mushiroda T, Imamura CK, Tanigawara Y, Hosono N, Kubo M, Sasa M, Nakamura Y, Zembutsu H (2012) Dose-adjustment study of tamoxifen based on CYP2D6 genotypes in Japanese breast cancer patients. Breast Cancer Res Treat 131:137–145

    Article  CAS  PubMed  Google Scholar 

  75. Irvin WJ Jr, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC, Moore SG, Olajide OA, Graham ML, Canale ST, Raab RE, Corso SW, Peppercorn JM, Anderson SM, Friedman KJ, Ogburn ET, Desta Z, Flockhart DA, McLeod HL, Evans JP, Carey LA (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29:3232–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S (2007) Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 9:R7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wegman P, Vainikka L, Stal O, Nordenskjold B, Skoog L, Rutqvist LE, Wingren S (2005) Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res 7:R284–R290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abraham JE, Maranian MJ, Driver KE, Platte R, Kalmyrzaev B, Baynes C, Luccarini C, Shah M, Ingle S, Greenberg D, Earl HM, Dunning AM, Pharoah PD, Caldas C (2010) CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res 12:R64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R, Dell’orto P, Biasi MO, Thurlimann B, Lyng MB, Ditzel HJ, Neven P, Debled M, Maibach R, Price KN, Gelber RD, Coates AS, Goldhirsch A, Rae JM, Viale G (2012) CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst 104:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kiyotani K, Mushiroda T, Zembutsu H, Nakamura Y (2013) Important and critical scientific aspects in pharmacogenomics analysis: lessons from controversial results of tamoxifen and CYP2D6 studies. J Hum Genet 58:327–333

    Article  CAS  PubMed  Google Scholar 

  81. Kiyotani K, Mushiroda T, Imamura CK, Hosono N, Tsunoda T, Kubo M, Tanigawara Y, Flockhart DA, Desta Z, Skaar TC, Aki F, Hirata K, Takatsuka Y, Okazaki M, Ohsumi S, Yamakawa T, Sasa M, Nakamura Y, Zembutsu H (2010) Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol 28:1287–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gjerde J, Geisler J, Lundgren S, Ekse D, Varhaug JE, Mellgren G, Steen VM, Lien EA (2010) Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer 10:313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kiyotani K, Mushiroda T, Tsunoda T, Morizono T, Hosono N, Kubo M, Tanigawara Y, Imamura CK, Flockhart DA, Aki F, Hirata K, Takatsuka Y, Okazaki M, Ohsumi S, Yamakawa T, Sasa M, Nakamura Y, Zembutsu H (2012) A genome-wide association study identifies locus at 10q22 associated with clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese. Hum Mol Genet 21:1665–1672

    Article  CAS  PubMed  Google Scholar 

  84. Johnson JA (2008) Warfarin: an old drug but still interesting. Pharmacotherapy 28:1081–1083

    Article  CAS  PubMed  Google Scholar 

  85. Lesko LJ (2008) The critical path of warfarin dosing: finding an optimal dosing strategy using pharmacogenetics. Clin Pharmacol Ther 84:301–303

    Article  CAS  PubMed  Google Scholar 

  86. Siguret V, Pautas E, Gouin-Thibault I (2008) Warfarin therapy: influence of pharmacogenetic and environmental factors on the anticoagulant response to warfarin. Vitam Horm 78:247–264

    Article  CAS  PubMed  Google Scholar 

  87. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, Pengo V, Barban M, Padrini R, Ieiri I, Otsubo K, Kashima T, Kimura S, Kijima S, Echizen H (2006) Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 16:101–110

    Article  CAS  PubMed  Google Scholar 

  88. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  CAS  PubMed  Google Scholar 

  89. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, Wallerman O, Melhus H, Wadelius C, Bentley D, Deloukas P (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5:262–270

    Article  CAS  PubMed  Google Scholar 

  90. Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S, Kamatani N, Nakamura Y (2010) Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum Mol Genet 19:4735–4744

    Article  CAS  PubMed  Google Scholar 

  91. Mushiroda T, Ohnishi Y, Saito S, Takahashi A, Kikuchi Y, Saito S, Shimomura H, Wanibuchi Y, Suzuki T, Kamatani N, Nakamura Y (2006) Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients. J Hum Genet 51:249–253

    Article  CAS  PubMed  Google Scholar 

  92. Karran P, Attard N (2008) Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 8:24–36

    Article  CAS  PubMed  Google Scholar 

  93. Pui CH, Carroll WL, Meshinchi S, Arceci RJ (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29:551–565

    Article  PubMed  Google Scholar 

  94. Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R, Rowntree C, Richards S (2013) Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol 14:199–209

    Article  CAS  PubMed  Google Scholar 

  95. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, Lin TN, Hoshitsuki K, Nersting J, Kihira K, Hofmann U, Komada Y, Kato M, McCorkle R, Li L, Koh K, Najera CR, Kham SK, Isobe T, Chen Z, Chiew EK, Bhojwani D, Jeffries C, Lu Y, Schwab M, Inaba H, Pui CH, Relling MV, Manabe A, Hori H, Schmiegelow K, Yeoh AE, Evans WE, Yang JJ (2016) NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 48:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Teml A, Schaeffeler E, Herrlinger KR, Klotz U, Schwab M (2007) Thiopurine treatment in inflammatory bowel disease: clinical pharmacology and implication of pharmacogenetically guided dosing. Clin Pharmacokinet 46:187–208

    Article  CAS  PubMed  Google Scholar 

  97. Candy S, Wright J, Gerber M, Adams G, Gerig M, Goodman R (1995) A controlled double blind study of azathioprine in the management of Crohn’s disease. Gut 37:674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fraser AG, Orchard TR, Jewell DP (2002) The efficacy of azathioprine for the treatment of inflammatory bowel disease: a 30 year review. Gut 50:485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD, Kim KJ, Park SH, Park SK, Yang DH, Dubinsky M, Lee I, McGovern DP, Liu J, Song K (2014) A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46:1017–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, Pei D, Chen Y, Crews KR, Kornegay N, Wong FL, Evans WE, Pui CH, Bhatia S, Relling MV (2015) Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33:1235–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Zembutsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zembutsu, H. (2019). Pharmacogenomics. In: Tsunoda, T., Tanaka, T., Nakamura, Y. (eds) Genome-Wide Association Studies. Springer, Singapore. https://doi.org/10.1007/978-981-13-8177-5_7

Download citation

Publish with us

Policies and ethics